Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genetics ; 218(4)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-33914877

RESUMEN

A missense mutant, unc-17(e245), which affects the Caenorhabditis elegans vesicular acetylcholine transporter UNC-17, has a severe uncoordinated phenotype, allowing efficient selection of dominant suppressors that revert this phenotype to wild-type. Such selections permitted isolation of numerous suppressors after EMS (ethyl methanesulfonate) mutagenesis, leading to demonstration of delays in mutation fixation after initial EMS treatment, as has been shown in T4 bacteriophage but not previously in eukaryotes. Three strong dominant extragenic suppressor loci have been defined, all of which act specifically on allele e245, which causes a G347R mutation in UNC-17. Two of the suppressors (sup-1 and sup-8/snb-1) have previously been shown to encode synaptic proteins able to interact directly with UNC-17. We found that the remaining suppressor, sup-2, corresponds to a mutation in erd-2.1, which encodes an endoplasmic reticulum retention protein; sup-2 causes a V186E missense mutation in transmembrane helix 7 of ERD-2.1. The same missense change introduced into the redundant paralogous gene erd-2.2 also suppressed unc-17(e245). Suppression presumably occurred by compensatory charge interactions between transmembrane helices of UNC-17 and ERD-2.1 or ERD-2.2, as previously proposed in work on suppression by SUP-1(G84E) or SUP-8(I97D)/synaptobrevin. erd-2.1(V186E) homozygotes were fully viable, but erd-2.1(V186E); erd-2.2(RNAi) exhibited synthetic lethality [like erd-2.1(RNAi); erd-2.2(RNAi)], indicating that the missense change in ERD-2.1 impairs its normal function in the secretory pathway but may allow it to adopt a novel moonlighting function as an unc-17 suppressor.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Genes Supresores , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación Missense , Unión Proteica , Sinapsis/metabolismo , Mutaciones Letales Sintéticas , Proteínas de Transporte Vesicular de Acetilcolina/química , Proteínas de Transporte Vesicular de Acetilcolina/genética
2.
Proc Natl Acad Sci U S A ; 117(1): 656-667, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31754030

RESUMEN

A major challenge facing the genetics of autism spectrum disorders (ASDs) is the large and growing number of candidate risk genes and gene variants of unknown functional significance. Here, we used Caenorhabditis elegans to systematically functionally characterize ASD-associated genes in vivo. Using our custom machine vision system, we quantified 26 phenotypes spanning morphology, locomotion, tactile sensitivity, and habituation learning in 135 strains each carrying a mutation in an ortholog of an ASD-associated gene. We identified hundreds of genotype-phenotype relationships ranging from severe developmental delays and uncoordinated movement to subtle deficits in sensory and learning behaviors. We clustered genes by similarity in phenomic profiles and used epistasis analysis to discover parallel networks centered on CHD8•chd-7 and NLGN3•nlg-1 that underlie mechanosensory hyperresponsivity and impaired habituation learning. We then leveraged our data for in vivo functional assays to gauge missense variant effect. Expression of wild-type NLG-1 in nlg-1 mutant C. elegans rescued their sensory and learning impairments. Testing the rescuing ability of conserved ASD-associated neuroligin variants revealed varied partial loss of function despite proper subcellular localization. Finally, we used CRISPR-Cas9 auxin-inducible degradation to determine that phenotypic abnormalities caused by developmental loss of NLG-1 can be reversed by adult expression. This work charts the phenotypic landscape of ASD-associated genes, offers in vivo variant functional assays, and potential therapeutic targets for ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular Neuronal/genética , Habituación Psicofisiológica/genética , Fenómica/métodos , Animales , Animales Modificados Genéticamente , Trastorno del Espectro Autista/fisiopatología , Técnicas de Observación Conductual/métodos , Conducta Animal/fisiología , Caenorhabditis elegans , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Epistasis Genética , Humanos , Inmunoglobulinas/genética , Locomoción/genética , Proteínas de la Membrana/genética , Mutación Missense , Fenotipo , Factores de Transcripción/genética
3.
Transl Stroke Res ; 9(5): 459-470, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29224114

RESUMEN

Aneurysmal subarachnoid hemorrhage (aSAH) is associated with high socio-economic burden. Prothrombotic states of early brain injury (EBI) and delayed cerebral ischemia (DCI) after aSAH determine morbidity and mortality. To understand how activated platelets might contribute to such prothrombotic states, we studied trends in coated-platelets during EBI and DCI periods. Serial blood samples from a prospective cohort of aSAH patients were collected and assayed for coated-platelet levels. Patient's coated-platelet level during post-hospital discharge follow-up served as an estimate of baseline. Occurrence of DCI, Montreal cognitive assessment (MOCA) score of < 26, and modified Rankin scale (mRS) of 3-6 were considered poor clinical outcomes. Non-linear regression analysis detected a transition between periods of rising and declining coated-platelet levels at day 4. Additional regression analyses of coated-platelet trends before day 4 showed differences among patients with modified Fisher 3-4 [4.2% per day (95% CI 2.4, 6.1) vs. - 0.8% per day (95% CI - 3.4, 1.8); p = 0.0023] and those developing DCI [4.6% per day (95% CI 2.8, 6.5) vs. - 1.9% per day (95% CI - 4.5, 0.5); p < 0.001]. Differences between peak coated-platelet levels and baseline levels were larger, on average for those with DCI [18.1 ± 9.6 vs. 10.6 ± 8.0; p = 0.03], MOCA < 26 [17.0 ± 7.8 vs. 10.7 ± 7.4; p = 0.05] and mRS 3-6 [24.8 ± 10.5 vs. 11.9 ± 7.6; p = 0.01]. Coated-platelet trends after aSAH predict DCI and short-term clinical outcomes. The degree of rise in coated-platelets is also associated with adverse clinical outcomes.


Asunto(s)
Plaquetas/metabolismo , Recuento de Plaquetas , Hemorragia Subaracnoidea/sangre , Adulto , Anciano , Anciano de 80 o más Años , Trastornos del Conocimiento/etiología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Análisis de Regresión , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/cirugía , Factores de Tiempo
4.
Genetics ; 199(3): 729-37, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25571900

RESUMEN

The essential neurotransmitter acetylcholine functions throughout the animal kingdom. In Caenorhabditis elegans, the acetylcholine biosynthetic enzyme [choline acetyltransferase (ChAT)] and vesicular transporter [vesicular acetylcholine transporter (VAChT)] are encoded by the cha-1 and unc-17 genes, respectively. These two genes compose a single complex locus in which the unc-17 gene is nested within the first intron of cha-1, and the two gene products arise from a common pre-messenger RNA (pre-mRNA) by alternative splicing. This genomic organization, known as the cholinergic gene locus (CGL), is conserved throughout the animal kingdom, suggesting that the structure is important for the regulation and function of these genes. However, very little is known about CGL regulation in any species. We now report the identification of an unusual type of splicing regulation in the CGL of C. elegans, mediated by two pairs of complementary sequence elements within the locus. We show that both pairs of elements are required for efficient splicing to the distal acceptor, and we also demonstrate that proper distal splicing depends more on sequence complementarity within each pair of elements than on the sequences themselves. We propose that these sequence elements are able to form stem-loop structures in the pre-mRNA; such structures would favor specific splicing alternatives and thus regulate CGL splicing. We have identified complementary elements at comparable locations in the genomes of representative species of other animal phyla; we suggest that this unusual regulatory mechanism may be a general feature of CGLs.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Colina O-Acetiltransferasa/genética , Genes Anidados , Empalme del ARN , Proteínas de Transporte Vesicular de Acetilcolina/genética , Animales , Evolución Molecular
5.
Genetics ; 192(4): 1315-25, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23051648

RESUMEN

The unc-17 gene encodes the vesicular acetylcholine transporter (VAChT) in Caenorhabditis elegans. unc-17 reduction-of-function mutants are small, slow growing, and uncoordinated. Several independent unc-17 alleles are associated with a glycine-to-arginine substitution (G347R), which introduces a positive charge in the ninth transmembrane domain (TMD) of UNC-17. To identify proteins that interact with UNC-17/VAChT, we screened for mutations that suppress the uncoordinated phenotype of UNC-17(G347R) mutants. We identified several dominant allele-specific suppressors, including mutations in the sup-1 locus. The sup-1 gene encodes a single-pass transmembrane protein that is expressed in a subset of neurons and in body muscles. Two independent suppressor alleles of sup-1 are associated with a glycine-to-glutamic acid substitution (G84E), resulting in a negative charge in the SUP-1 TMD. A sup-1 null mutant has no obvious deficits in cholinergic neurotransmission and does not suppress unc-17 mutant phenotypes. Bimolecular fluorescence complementation (BiFC) analysis demonstrated close association of SUP-1 and UNC-17 in synapse-rich regions of the cholinergic nervous system, including the nerve ring and dorsal nerve cords. These observations suggest that UNC-17 and SUP-1 are in close proximity at synapses. We propose that electrostatic interactions between the UNC-17(G347R) and SUP-1(G84E) TMDs alter the conformation of the mutant UNC-17 protein, thereby restoring UNC-17 function; this is similar to the interaction between UNC-17/VAChT and synaptobrevin.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de la Membrana/genética , Proteínas de Transporte Vesicular de Acetilcolina/genética , Alelos , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Genes Supresores , Prueba de Complementación Genética/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mutación , Sistema Nervioso/metabolismo , Estructura Terciaria de Proteína , Sinapsis/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
6.
PLoS One ; 7(7): e40095, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22808098

RESUMEN

The recycling of synaptic vesicles requires the recovery of vesicle proteins and membrane. Members of the stonin protein family (Drosophila Stoned B, mammalian stonin 2) have been shown to link the synaptic vesicle protein synaptotagmin to the endocytic machinery. Here we characterize the unc-41 gene, which encodes the stonin ortholog in the nematode Caenorhabditis elegans. Transgenic expression of Drosophila stonedB rescues unc-41 mutant phenotypes, demonstrating that UNC-41 is a bona fide member of the stonin family. In unc-41 mutants, synaptotagmin is present in axons, but is mislocalized and diffuse. In contrast, UNC-41 is localized normally in synaptotagmin mutants, demonstrating a unidirectional relationship for localization. The phenotype of snt-1 unc-41 double mutants is stronger than snt-1 mutants, suggesting that UNC-41 may have additional, synaptotagmin-independent functions. We also show that unc-41 mutants have defects in synaptic vesicle membrane endocytosis, including a ∼50% reduction of vesicles in both acetylcholine and GABA motor neurons. These endocytic defects are similar to those observed in apm-2 mutants, which lack the µ2 subunit of the AP2 adaptor complex. However, no further reduction in synaptic vesicles was observed in unc-41 apm-2 double mutants, suggesting that UNC-41 acts in the same endocytic pathway as µ2 adaptin.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Endocitosis , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Genes de Helminto/genética , Genoma/genética , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/metabolismo , Fenotipo , Transporte de Proteínas , Vesículas Sinápticas/ultraestructura , Sinaptotagminas/metabolismo , Proteínas de Transporte Vesicular
7.
Genetics ; 177(1): 195-204, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17603106

RESUMEN

The cho-1 gene in Caenorhabditis elegans encodes a high-affinity plasma-membrane choline transporter believed to be rate limiting for acetylcholine (ACh) synthesis in cholinergic nerve terminals. We found that CHO-1 is expressed in most, but not all cholinergic neurons in C. elegans. cho-1 null mutants are viable and exhibit mild deficits in cholinergic behavior; they are slightly resistant to the acetylcholinesterase inhibitor aldicarb, and they exhibit reduced swimming rates in liquid. cho-1 mutants also fail to sustain swimming behavior; over a 33-min time course, cho-1 mutants slow down or stop swimming, whereas wild-type animals sustain the initial rate of swimming over the duration of the experiment. A functional CHO-1GFP fusion protein rescues these cho-1 mutant phenotypes and is enriched at cholinergic synapses. Although cho-1 mutants clearly exhibit defects in cholinergic behaviors, the loss of cho-1 function has surprisingly mild effects on cholinergic neurotransmission. However, reducing endogenous choline synthesis strongly enhances the phenotype of cho-1 mutants, giving rise to a synthetic uncoordinated phenotype. Our results indicate that both choline transport and de novo synthesis provide choline for ACh synthesis in C. elegans cholinergic neurons.


Asunto(s)
Acetilcolina/biosíntesis , Caenorhabditis elegans/fisiología , Colina/farmacocinética , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Adaptación Fisiológica , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans , Técnica del Anticuerpo Fluorescente , Proteínas de Transporte de Membrana/genética , Neuronas/citología , Transmisión Sináptica , Distribución Tisular
8.
Mol Cell Neurosci ; 34(4): 642-52, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17321753

RESUMEN

Synaptotagmin 1, encoded by the snt-1 gene in Caenorhabditis elegans, is a major synaptic vesicle protein containing two Ca(2+)-binding (C2) domains. Alternative splicing gives rise to two synaptotagmin 1 isoforms, designated SNT-1A and SNT-1B, which differ in amino acid sequence in the third, fourth, and fifth beta-strands of the second C2 domain (C2B). We report here that expression of either SNT-1 isoform under control of a strong pan-neural promoter fully rescues the snt-1 null phenotype. Furthermore, C-terminal fusions of either isoform with GFP are trafficked properly to synapses and are fully functional, unlike synaptotagmin 1Colon, two colonsGFP fusions in mice. Analysis of isoform expression with genomic GFP reporter constructs revealed that the SNT-1A and-1B isoforms are differentially expressed and localized in the C. elegans nervous system. We also report molecular, behavioral, and immunocytochemical analyses of twenty snt-1 mutations. One of these mutations, md259, specifically disrupts expression of the SNT-1A isoform and has defects in a subset of synaptotagmin 1-mediated behaviors. A second mutation, md220, is an in-frame 9-bp deletion that removes a conserved tri-peptide sequence (VIL) in the second beta-strand of the C2B domain and disrupts the proper intracellular trafficking of synaptotagmin. Site-directed mutagenesis of a functional SNT-1Colon, two colonsGFP fusion protein was used to examine the potential role of the VIL sequence in synaptotagmin trafficking. Although our results suggest the VIL sequence is most likely not a specific targeting motif, the use of SNT-1Colon, two colonsGFP fusions has great potential for investigating synaptotagmin trafficking and localization.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervioso Central/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Alelos , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión
9.
Mol Biol Cell ; 17(7): 3021-30, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16641366

RESUMEN

Sodium-dependent neurotransmitter transporters participate in the clearance and/or recycling of neurotransmitters from synaptic clefts. The snf-11 gene in Caenorhabditis elegans encodes a protein of high similarity to mammalian GABA transporters (GATs). We show here that snf-11 encodes a functional GABA transporter; SNF-11-mediated GABA transport is Na+ and Cl- dependent, has an EC50 value of 168 microM, and is blocked by the GAT1 inhibitor SKF89976A. The SNF-11 protein is expressed in seven GABAergic neurons, several additional neurons in the head and retrovesicular ganglion, and three groups of muscle cells. Therefore, all GABAergic synapses are associated with either presynaptic or postsynaptic (or both) expression of SNF-11. Although a snf-11 null mutation has no obvious effects on GABAergic behaviors, it leads to resistance to inhibitors of acetylcholinesterase. In vivo, a snf-11 null mutation blocks GABA uptake in at least a subset of GABAergic cells; in a cell culture system, all GABA uptake is abolished by the snf-11 mutation. We conclude that GABA transport activity is not essential for normal GABAergic function in C. elegans and that the localization of SNF-11 is consistent with a GABA clearance function rather than recycling.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/fisiología , Genes de Helminto/fisiología , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Caenorhabditis elegans/genética , GABAérgicos/farmacología , Proteínas Transportadoras de GABA en la Membrana Plasmática/análisis , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Mutación , Ácidos Nipecóticos/farmacología , Fenotipo , Filogenia , Sodio/metabolismo , Transmisión Sináptica
10.
J Neurosci ; 23(16): 6537-45, 2003 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-12878695

RESUMEN

The Caenorhabditis elegans unc-2 gene encodes a voltage-gated calcium channel alpha1 subunit structurally related to mammalian dihydropyridine-insensitive high-threshold channels. In the present paper we describe the characterization of seven alleles of unc-2. Using an unc-2 promoter-tagged green fluorescent protein construct, we show that unc-2 is primarily expressed in motor neurons, several subsets of sensory neurons, and the HSN and VC neurons that control egg laying. Examination of behavioral phenotypes, including defecation, thrashing, and sensitivities to aldicarb and nicotine suggests that UNC-2 acts presynaptically to mediate both cholinergic and GABAergic neurotransmission. Sequence analysis of the unc-2 alleles shows that e55, ra605, ra606, ra609, and ra610 all are predicted to prematurely terminate and greatly reduce or eliminate unc-2 function. In contrast, the ra612 and ra614 alleles are missense mutations resulting in the substitution of highly conserved residues in the C terminus and the domain IVS4-IVS5 linker, respectively. Heterologous expression of a rat brain P/Q-type channel containing the ra612 mutation shows that the glycine to arginine substitution affects a variety of channel characteristics, including the voltage dependence of activation, steady-state inactivation, as well as channel kinetics. Overall, our findings suggest that UNC-2 plays a pivotal role in mediating a number of physiological processes in the nematode and also defines a number of critical residues important for calcium channel function in vivo.


Asunto(s)
Alelos , Proteínas de Caenorhabditis elegans/genética , Proteínas de la Membrana/genética , Aldicarb/farmacología , Sustitución de Aminoácidos/genética , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biosíntesis , Canales de Calcio Tipo N/biosíntesis , Canales de Calcio Tipo N/genética , Línea Celular , Análisis Mutacional de ADN , Pruebas Genéticas , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/genética , Proteínas de la Membrana/biosíntesis , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Mutación , Neuronas Aferentes/metabolismo , Nicotina/farmacología , Técnicas de Placa-Clamp , Fenotipo , Ratas , Relación Estructura-Actividad , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA