Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2407066121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959038

RESUMEN

Mammalian transglutaminases, a family of Ca2+-dependent proteins, are implicated in a variety of diseases. For example, celiac disease (CeD) is an autoimmune disorder whose pathogenesis requires transglutaminase 2 (TG2) to deamidate select glutamine residues in diet-derived gluten peptides. Deamidation involves the formation of transient γ-glutamyl thioester intermediates. Recent studies have revealed that in addition to the deamidated gluten peptides themselves, their corresponding thioester intermediates are also pathogenically relevant. A mechanistic understanding of this relevance is hindered by the absence of any structure of Ca2+-bound TG2. We report the X-ray crystallographic structure of human TG2 bound to an inhibitory gluten peptidomimetic and two Ca2+ ions in sites previously designated as S1 and S3. Together with additional structure-guided experiments, this structure provides a mechanistic explanation for how S1 regulates formation of an inhibitory disulfide bond in TG2, while also establishing that S3 is essential for γ-glutamyl thioester formation. Furthermore, our crystallographic findings and associated analyses have revealed that i) two interacting residues, H305 and E363, play a critical role in resolving the thioester intermediate into an isopeptide bond (transamidation) but not in thioester hydrolysis (deamidation); and ii) residues N333 and K176 stabilize preferred TG2 substrates and inhibitors via hydrogen bonding to nonreactive backbone atoms. Overall, the intermediate-state conformer of TG2 reported here represents a superior model to previously characterized conformers for both transition states of the TG2-catalyzed reaction.


Asunto(s)
Calcio , Proteínas de Unión al GTP , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Transglutaminasas/metabolismo , Transglutaminasas/química , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Humanos , Calcio/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/química , Cristalografía por Rayos X , Glútenes/metabolismo , Glútenes/química , Modelos Moleculares , Conformación Proteica , Enfermedad Celíaca/metabolismo , Unión Proteica
2.
Proc Natl Acad Sci U S A ; 121(12): e2310866121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483996

RESUMEN

Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed on activated T cells and an emerging immunotherapy target. Domain 1 (D1) of LAG-3, which has been purported to directly interact with major histocompatibility complex class II (MHCII) and fibrinogen-like protein 1 (FGL1), has been the major focus for the development of therapeutic antibodies that inhibit LAG-3 receptor-ligand interactions and restore T cell function. Here, we present a high-resolution structure of glycosylated mouse LAG-3 ectodomain, identifying that cis-homodimerization, mediated through a network of hydrophobic residues within domain 2 (D2), is critically required for LAG-3 function. Additionally, we found a previously unidentified key protein-glycan interaction in the dimer interface that affects the spatial orientation of the neighboring D1 domain. Mutation of LAG-3 D2 residues reduced dimer formation, dramatically abolished LAG-3 binding to both MHCII and FGL1 ligands, and consequentially inhibited the role of LAG-3 in suppressing T cell responses. Intriguingly, we showed that antibodies directed against D1, D2, and D3 domains are all capable of blocking LAG-3 dimer formation and MHCII and FGL-1 ligand binding, suggesting a potential allosteric model of LAG-3 function tightly regulated by dimerization. Furthermore, our work reveals unique epitopes, in addition to D1, that can be targeted for immunotherapy of cancer and other human diseases.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Linfocitos T , Animales , Humanos , Ratones , Dimerización , Fibrinógeno/metabolismo , Ligandos , Mutación
3.
Acta Crystallogr D Struct Biol ; 80(Pt 1): 26-43, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38164955

RESUMEN

The use of artificial intelligence to process diffraction images is challenged by the need to assemble large and precisely designed training data sets. To address this, a codebase called Resonet was developed for synthesizing diffraction data and training residual neural networks on these data. Here, two per-pattern capabilities of Resonet are demonstrated: (i) interpretation of crystal resolution and (ii) identification of overlapping lattices. Resonet was tested across a compilation of diffraction images from synchrotron experiments and X-ray free-electron laser experiments. Crucially, these models readily execute on graphics processing units and can thus significantly outperform conventional algorithms. While Resonet is currently utilized to provide real-time feedback for macromolecular crystallography users at the Stanford Synchrotron Radiation Lightsource, its simple Python-based interface makes it easy to embed in other processing frameworks. This work highlights the utility of physics-based simulation for training deep neural networks and lays the groundwork for the development of additional models to enhance diffraction collection and analysis.


Asunto(s)
Inteligencia Artificial , Sincrotrones , Cristalografía por Rayos X , Algoritmos , Simulación por Computador
4.
J Appl Crystallogr ; 56(Pt 5): 1557-1568, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37791367

RESUMEN

The COVID-19 pandemic measures forced students to stay home and confined them to remote learning. This had a large impact on laboratory experiments, which are often impossible to complete from home. This article is a resource for instructors/educators to introduce the topic of structural biology and crystallographic methods. The main focus is to describe a hands-on crystallization laboratory exercise that can be carried out remotely at home with safe household products. X-ray crystallography is a vital technique for determining protein structure and function. This information can be used to understand fundamental biological processes and to help in the design of life-saving medications. Here, a method was developed to teach crystallography using reagents and equipment that can be found in grocery stores. The steps involved in a crystallography experiment are detailed with links and references to additional resources.

5.
Nat Commun ; 14(1): 6273, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805629

RESUMEN

Monensin A is a prototypical natural polyether polyketide antibiotic. It acts by binding a metal cation and facilitating its transport across the cell membrane. Biosynthesis of monensin A involves construction of a polyene polyketide backbone, subsequent epoxidation of the alkenes, and, lastly, formation of cyclic ethers via epoxide-opening cyclization. MonCI, a flavin-dependent monooxygenase, is thought to transform all three alkenes in the intermediate polyketide premonensin A into epoxides. Our crystallographic study has revealed that MonCI's exquisite stereocontrol is due to the preorganization of the active site residues which allows only one specific face of the alkene to approach the reactive C(4a)-hydroperoxyflavin moiety. Furthermore, MonCI has an unusually large substrate-binding cavity that can accommodate premonensin A in an extended or folded conformation which allows any of the three alkenes to be placed next to C(4a)-hydroperoxyflavin. MonCI, with its ability to perform multiple epoxidations on the same substrate in a stereospecific manner, demonstrates the extraordinary versatility of the flavin-dependent monooxygenase family of enzymes.


Asunto(s)
Oxigenasas de Función Mixta , Policétidos , Monensina , Antibacterianos , Alquenos
6.
Nat Chem ; 15(12): 1715-1721, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37563323

RESUMEN

The design and improvement of enzymes based on physical principles remain challenging. Here we demonstrate that the principle of electrostatic catalysis can be leveraged to substantially improve a natural enzyme's activity. We enhanced the active-site electric field in horse liver alcohol dehydrogenase by replacing the serine hydrogen-bond donor with threonine and replacing the catalytic Zn2+ with Co2+. Based on the electric field enhancement, we make a quantitative prediction of rate acceleration-50-fold faster than the wild-type enzyme-which was in close agreement with experimental measurements. The effects of the hydrogen bonding and metal coordination, two distinct chemical forces, are described by a unified physical quantity-electric field, which is quantitative, and shown here to be additive and predictive. These results suggest a new design paradigm for both biological and non-biological catalysts.


Asunto(s)
Serina , Animales , Caballos , Dominio Catalítico , Catálisis , Serina/química , Electricidad Estática , Cinética
7.
Sci Rep ; 13(1): 7980, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198233

RESUMEN

Echinomycin is a natural product DNA bisintercalator antibiotic. The echinomycin biosynthetic gene cluster in Streptomyces lasalocidi includes a gene encoding the self-resistance protein Ecm16. Here, we present the 2.0 Å resolution crystal structure of Ecm16 bound to adenosine diphosphate. The structure of Ecm16 closely resembles that of UvrA, the DNA damage sensor component of the prokaryotic nucleotide excision repair system, but Ecm16 lacks the UvrB-binding domain and its associated zinc-binding module found in UvrA. Mutagenesis study revealed that the insertion domain of Ecm16 is required for DNA binding. Furthermore, the specific amino acid sequence of the insertion domain allows Ecm16 to distinguish echinomycin-bound DNA from normal DNA and link substrate binding to ATP hydrolysis activity. Expression of ecm16 in the heterologous host Brevibacillus choshinensis conferred resistance against echinomycin and other quinomycin antibiotics, including thiocoraline, quinaldopeptin, and sandramycin. Our study provides new insight into how the producers of DNA bisintercalator antibiotics fend off the toxic compounds that they produce.


Asunto(s)
Equinomicina , Streptomyces , Equinomicina/farmacología , Adenosina Trifosfatasas/metabolismo , ADN/metabolismo , Antibacterianos/química , Streptomyces/genética , Streptomyces/metabolismo
8.
Biochemistry ; 62(11): 1589-1593, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37184546

RESUMEN

Fragment antigen-binding domains of antibodies (Fabs) are powerful probes of structure-function relationships of assembly line polyketide synthases (PKSs). We report the discovery and characterization of Fabs interrogating the structure and function of the ketosynthase-acyltransferase (KS-AT) core of Module 2 of the 6-deoxyerythronolide B synthase (DEBS). Two Fabs (AC2 and BB1) were identified to potently inhibit the catalytic activity of Module 2. Both AC2 and BB1 were found to modulate ACP-mediated reactions catalyzed by this module, albeit by distinct mechanisms. AC2 primarily affects the rate (kcat), whereas BB1 increases the KM of an ACP-mediated reaction. A third Fab, AA5, binds to the KS-AT fragment of DEBS Module 2 without altering either parameter; it is phenotypically reminiscent of a previously characterized Fab, 1B2, shown to principally recognize the N-terminal helical docking domain of DEBS Module 3. Crystal structures of AA5 and 1B2 bound to the KS-AT fragment of Module 2 were solved to 2.70 and 2.65 Å resolution, respectively, and revealed entirely distinct recognition features of the two antibodies. The new tools and insights reported here pave the way toward advancing our understanding of the structure-function relationships of DEBS Module 2, arguably the most well-studied module of an assembly line PKS.


Asunto(s)
Eritromicina , Sintasas Poliquetidas , Sintasas Poliquetidas/química , Aciltransferasas/química , Anticuerpos
9.
Nat Commun ; 14(1): 1733, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977673

RESUMEN

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we design a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibits PLpro with kinact/KI = 9,600 M-1 s-1, achieves sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and does not inhibit a panel of human deubiquitinases (DUBs) at >30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validates our design strategy and establishes the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Animales , Humanos , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , SARS-CoV-2/metabolismo , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas , Mamíferos/metabolismo
10.
J Am Chem Soc ; 144(45): 20947-20954, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36324090

RESUMEN

The widespread design of covalent drugs has focused on crafting reactive groups of proper electrophilicity and positioning toward targeted amino-acid nucleophiles. We found that environmental electric fields projected onto a reactive chemical bond, an overlooked design element, play essential roles in the covalent inhibition of TEM-1 ß-lactamase by avibactam. Using the vibrational Stark effect, the magnitudes of the electric fields that are exerted by TEM active sites onto avibactam's reactive C═O were measured and demonstrate an electrostatic gating effect that promotes bond formation yet relatively suppresses the reverse dissociation. These results suggest new principles of covalent drug design and off-target site prediction. Unlike shape and electrostatic complementary which address binding constants, electrostatic catalysis drives reaction rates, essential for covalent inhibition, and deepens our understanding of chemical reactivity, selectivity, and stability in complex systems.


Asunto(s)
Compuestos de Azabiciclo , beta-Lactamasas , Compuestos de Azabiciclo/química , beta-Lactamasas/metabolismo , Dominio Catalítico , Electricidad Estática , Inhibidores de beta-Lactamasas/farmacología
11.
Biochemistry ; 61(21): 2261-2266, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36190114

RESUMEN

Pyrimidine nucleotide biosynthesis in humans is a promising chemotherapeutic target for infectious diseases caused by RNA viruses. Because mammalian cells derive pyrimidine ribonucleotides through a combination of de novo biosynthesis and salvage, combined inhibition of dihydroorotate dehydrogenase (DHODH; the first committed step in de novo pyrimidine nucleotide biosynthesis) and uridine/cytidine kinase 2 (UCK2; the first step in salvage of exogenous nucleosides) strongly attenuates viral replication in infected cells. However, while several pharmacologically promising inhibitors of human DHODH are known, to date there are no reports of medicinally viable leads against UCK2. Here, we use structure-based drug prototyping to identify two classes of promising leads that noncompetitively inhibit UCK2 activity. In the process, we have identified a hitherto unknown allosteric site at the intersubunit interface of this homotetrameric enzyme. By reducing the kcat of human UCK2 without altering its KM, these new inhibitors have the potential to enable systematic dialing of the fractional inhibition of pyrimidine salvage to achieve the desired antiviral effect with minimal host toxicity.


Asunto(s)
Nucleótidos de Pirimidina , Uridina Quinasa , Humanos , Uridina , Uridina Quinasa/antagonistas & inhibidores
12.
Nat Commun ; 13(1): 5285, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075915

RESUMEN

In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like protease (3CLpro) can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.50 Å resolution crystal structure of 3CLpro C145S bound to NEMO226-234 reveals subsites that tolerate a range of viral and host substrates through main chain hydrogen bonds while also enforcing specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and physics-based computational methods predict that variation in key binding residues of 3CLpro-NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of NEMO is an important piece of information to be accounted for, in the pathology of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/química , Cisteína Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas , Proteínas
13.
Res Sq ; 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35898342

RESUMEN

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with k inact /K I = 10,000 M - 1 s - 1 , achieved sub-µM EC 50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.

14.
J Am Chem Soc ; 144(9): 3968-3978, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35200017

RESUMEN

The past decades have witnessed an explosion of de novo protein designs with a remarkable range of scaffolds. It remains challenging, however, to design catalytic functions that are competitive with naturally occurring counterparts as well as biomimetic or nonbiological catalysts. Although directed evolution often offers efficient solutions, the fitness landscape remains opaque. Green fluorescent protein (GFP), which has revolutionized biological imaging and assays, is one of the most redesigned proteins. While not an enzyme in the conventional sense, GFPs feature competing excited-state decay pathways with the same steric and electrostatic origins as conventional ground-state catalysts, and they exert exquisite control over multiple reaction outcomes through the same principles. Thus, GFP is an "excited-state enzyme". Herein we show that rationally designed mutants and hybrids that contain environmental mutations and substituted chromophores provide the basis for a quantitative model and prediction that describes the influence of sterics and electrostatics on excited-state catalysis of GFPs. As both perturbations can selectively bias photoisomerization pathways, GFPs with fluorescence quantum yields (FQYs) and photoswitching characteristics tailored for specific applications could be predicted and then demonstrated. The underlying energetic landscape, readily accessible via spectroscopy for GFPs, offers an important missing link in the design of protein function that is generalizable to catalyst design.


Asunto(s)
Proteínas Fluorescentes Verdes , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Análisis Espectral , Electricidad Estática
15.
Nat Commun ; 13(1): 746, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136054

RESUMEN

The task of protein sequence design is central to nearly all rational protein engineering problems, and enormous effort has gone into the development of energy functions to guide design. Here, we investigate the capability of a deep neural network model to automate design of sequences onto protein backbones, having learned directly from crystal structure data and without any human-specified priors. The model generalizes to native topologies not seen during training, producing experimentally stable designs. We evaluate the generalizability of our method to a de novo TIM-barrel scaffold. The model produces novel sequences, and high-resolution crystal structures of two designs show excellent agreement with in silico models. Our findings demonstrate the tractability of an entirely learned method for protein sequence design.


Asunto(s)
Aprendizaje Profundo , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos/genética , Simulación por Computador , Cristalografía por Rayos X , Modelos Moleculares , Dominios Proteicos/genética , Pliegue de Proteína
16.
J Biol Chem ; 298(3): 101610, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065072

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic trait that can cause hemolytic anemia. To date, over 150 nonsynonymous mutations have been identified in G6PD, with pathogenic mutations clustering near the dimer and/or tetramer interface and the allosteric NADP+-binding site. Recently, our lab identified a small molecule that activates G6PD variants by stabilizing the allosteric NADP+ and dimer complex, suggesting therapeutics that target these regions may improve structural defects. Here, we elucidated the connection between allosteric NADP+ binding, oligomerization, and pathogenicity to determine whether oligomer stabilization can be used as a therapeutic strategy for G6PD deficiency (G6PDdef). We first solved the crystal structure for G6PDK403Q, a mutant that mimics the physiological acetylation of wild-type G6PD in erythrocytes and demonstrated that loss of allosteric NADP+ binding induces conformational changes in the dimer. These structural changes prevent tetramerization, are unique to Class I variants (the most severe form of G6PDdef), and cause the deactivation and destabilization of G6PD. We also introduced nonnative cysteines at the oligomer interfaces and found that the tetramer complex is more catalytically active and stable than the dimer. Furthermore, stabilizing the dimer and tetramer improved protein stability in clinical variants, regardless of clinical classification, with tetramerization also improving the activity of G6PDK403Q and Class I variants. These findings were validated using enzyme activity and thermostability assays, analytical size-exclusion chromatography (SEC), and SEC coupled with small-angle X-ray scattering (SEC-SAXS). Taken together, our findings suggest a potential therapeutic strategy for G6PDdef and provide a foundation for future drug discovery efforts.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Glucosafosfato Deshidrogenasa , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Humanos , Mutación , NADP/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
17.
Res Sq ; 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34642689

RESUMEN

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with kinact/KI = 10,000 M- 1 s- 1, achieved sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.

18.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34907018

RESUMEN

Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides were engineered to vary the electronic properties of a key tyrosine (M210) close to an essential electron transfer component via its replacement with site-specific, genetically encoded noncanonical amino acid tyrosine analogs. High fidelity of noncanonical amino acid incorporation was verified with mass spectrometry and X-ray crystallography and demonstrated that RC variants exhibit no significant structural alterations relative to wild type (WT). Ultrafast transient absorption spectroscopy indicates the excited primary electron donor, P*, decays via a ∼4-ps and a ∼20-ps population to produce the charge-separated state P+HA- in all variants. Global analysis indicates that in the ∼4-ps population, P+HA- forms through a two-step process, P*→ P+BA-→ P+HA-, while in the ∼20-ps population, it forms via a one-step P* → P+HA- superexchange mechanism. The percentage of the P* population that decays via the superexchange route varies from ∼25 to ∼45% among variants, while in WT, this percentage is ∼15%. Increases in the P* population that decays via superexchange correlate with increases in the free energy of the P+BA- intermediate caused by a given M210 tyrosine analog. This was experimentally estimated through resonance Stark spectroscopy, redox titrations, and near-infrared absorption measurements. As the most energetically perturbative variant, 3-nitrotyrosine at M210 creates an ∼110-meV increase in the free energy of P+BA- along with a dramatic diminution of the 1,030-nm transient absorption band indicative of P+BA- formation. Collectively, this work indicates the tyrosine at M210 tunes the mechanism of primary electron transfer in the RC.


Asunto(s)
Proteínas Bacterianas/metabolismo , Variación Genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Transporte de Electrón , Regulación Bacteriana de la Expresión Génica/fisiología , Conformación Proteica
19.
Science ; 374(6568): 723-729, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34735234

RESUMEN

Type I modular polyketide synthases are homodimeric multidomain assembly line enzymes that synthesize a variety of polyketide natural products by performing polyketide chain extension and ß-keto group modification reactions. We determined the 2.4-angstrom-resolution x-ray crystal structure and the 3.1-angstrom-resolution cryo­electron microscopy structure of the Lsd14 polyketide synthase, stalled at the transacylation and condensation steps, respectively. These structures revealed how the constituent domains are positioned relative to each other, how they rearrange depending on the step in the reaction cycle, and the specific interactions formed between the domains. Like the evolutionarily related mammalian fatty acid synthase, Lsd14 contains two reaction chambers, but only one chamber in Lsd14 has the full complement of catalytic domains, indicating that only one chamber produces the polyketide product at any given time.


Asunto(s)
Sintasas Poliquetidas/química , Streptomyces/enzimología , Proteína Transportadora de Acilo/química , Acilación , Aciltransferasas/química , Dominio Catalítico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Hidroliasas/química , Hidroliasas/metabolismo , Hidroliasas/ultraestructura , Lasalocido/biosíntesis , Modelos Moleculares , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/ultraestructura , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
20.
bioRxiv ; 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34816264

RESUMEN

In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like (3CLpro) protease can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.14 Å resolution crystal structure of 3CLpro C145S bound to NEMO 226-235 reveals subsites that tolerate a range of viral and host substrates through main chain hydrogen bonds while also enforcing specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and physics-based computational methods predict that variation in key binding residues of 3CLpro- NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of NEMO is an important piece of information to be accounted for in the pathology of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...