Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(10): R488-R490, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772332

RESUMEN

Compared with low latitude coasts, many polar latitudes are still little impacted by intense and direct anthropogenic stressors. Climate forcing is now bringing rapid physical change to nearshore polar realms. In the shallow coastal waters adjacent to the United Kingdom's Rothera Research Station in the West Antarctic Peninsula (WAP), 225 seabed markers at 5-25 m depth have been surveyed and replaced every year from 2002-2023 (75 markers at each of 5, 10 and 25 m). This is one of the longest continuously running marine disturbance experiments in the world, in one of Earth's fastest changing environments. Different categories of sea ice are recorded (including when the sea surface freezes into fast ice) at Rothera since the 1980s, and losses of marine ice in both polar regions are one of the striking responses to a warming planet1. Five to ten years of seabed marker hit rate data (marker broken or moved) showed that reduced sea ice cover is correlated with disturbance and mortality on the seabed2,3.


Asunto(s)
Cambio Climático , Cubierta de Hielo , Regiones Antárticas
2.
Sci Data ; 10(1): 265, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37164979

RESUMEN

Oceanographic changes adjacent to Antarctica have global climatic and ecological impacts. However, this is the most challenging place in the world to obtain marine data due to its remoteness and inhospitable nature, especially in winter. Here, we present more than 2000 Conductivity-Temperature-Depth (CTD) profiles and associated water sample data collected with (almost uniquely) full year-round coverage from the British Antarctic Survey Rothera Research Station at the west Antarctic Peninsula. Sampling is conducted from a small boat or a sled, depending on the sea ice conditions. When conditions allow, sampling is twice weekly in summer and weekly in winter, with profiling to nominally 500 m and with discrete water samples taken at 15 m water depth. Daily observations are made of the sea ice conditions in the area. This paper presents the first 20 years of data collection, 1997-2017. This time series represents a unique and valuable resource for investigations of the high-latitude ocean's role in climate change, ocean/ice interactions, and marine biogeochemistry and carbon drawdown.

3.
JCO Oncol Pract ; 17(12): e1949-e1957, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34460290

RESUMEN

PURPOSE: An episode-based payment model, the Radiation Oncology Alternative Payment Model (RO-APM), is scheduled to go into effect in January 2022. This article investigates the effects of RO-APM on hospital-based and freestanding community centers. METHODS: Historical Medicare data used to generate the RO-APM base rates were reviewed. A sensitivity analysis was performed to show how the RO-APM reimbursements compare with current reimbursements for commonly accepted treatment schedules and with current reimbursements at a large community practice. RESULTS: The RO-APM base rates represent a 2.2% decrease in overall Medicare reimbursement. Freestanding centers have historically billed at higher rates than hospital-based centers, however, and the RO-APM base rates represent a 6% decrease in global reimbursement for freestanding centers. The sensitivity analysis showed that, except for proton therapy, moderately hypofractionated treatment schedules will receive comparable reimbursement under RO-APM. Treatments using higher numbers of fractions of intensity-modulated radiation therapy or protons will see larger decreases in reimbursement. Application of the RO-APM base rates to the 2020 Medicare treatments in our health care network would result in small changes in expected reimbursement, but our sensitivity analysis indicated that Medicare reimbursement reductions could be as large as 23%. CONCLUSION: Compared with historical Medicare reimbursement, RO-APM base rates provide lower reimbursement for many common treatment scenarios, and this will have a larger effect on centers that use complex treatment techniques and longer fractionation schedules or have a large Medicare population.


Asunto(s)
Neoplasias , Oncología por Radiación , Anciano , Atención a la Salud , Humanos , Oncología Médica , Medicare , Neoplasias/radioterapia , Estados Unidos
4.
Med Dosim ; 46(3): 264-268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33771435

RESUMEN

The purpose of this work was to evaluate using Varian HyperArc as a planning and treatment solution for whole brain radiotherapy (WBRT) with hippocampal sparing following Radiation Therapy Oncology Group (RTOG) 0933 dosimetric criteria. Ten patients previously treated for intracranial lesions were retrospectively planned for WBRT with hippocampal sparing using HyperArc and a 2-arc coplanar VMAT technique. The whole brain and hippocampus were delineated on fused MRI and CT datasets. The planning target volume (PTV), defined as the whole brain excluding the hippocampal avoidance region, was prescribed 30 Gy in 10 fractions. Plans were evaluated using dosimetric parameters which included the volume of 105% of the prescription dose (V105%) and the maximum dose to the PTV, and the minimum dose to the hippocampus. The planning time, delivery time, and delivery quality assurance (QA) results were also evaluated. Statistical significance was performed between the HyperArc and coplanar VMAT metrics using the Wilcoxon signed-rank test with a significance level of 0.05. All plans met RTOG 0933 dosimetric criteria. HyperArc plans demonstrated significant improvements in PTV dosimetric quality which included a reduced V105% of 6 ± 7% and decreased maximum dose of 1.3 ± 0.3 Gy, compared to coplanar VMAT. Significant OAR sparing was also found for HyperArc plans that included a decreased minimum dose to the hippocampus of 0.3 ± 0.3 Gy. Coplanar VMAT plans resulted in significantly shorter planning and delivery times, compared to HyperArc, by 2.4 minutes and 1.5 minutes, respectively. No significant difference was found between the delivery QA results. This study demonstrated using Varian HyperArc as a planning and treatment solution for WBRT with hippocampal sparing following RTOG 0933 dosimetric criteria. The primary advantages of WBRT with hippocampal sparing using HyperArc, compared to coplanar VMAT, are the gains in OAR sparing and reduced high dose volumes to the PTV.


Asunto(s)
Neoplasias Encefálicas , Radioterapia de Intensidad Modulada , Encéfalo , Neoplasias Encefálicas/radioterapia , Hipocampo , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
5.
Metallomics ; 5(8): 964-72, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23803742

RESUMEN

The copper (Cu) exporter ATP7B mediates cellular resistance to cisplatin (cDDP) by increasing drug efflux. ATP7B binds and sequesters cDDP in into secretory vesicles. Upon cDDP exposure ATP7B traffics from the trans-Golgi network (TGN) to the periphery of the cell in a manner that requires the cysteine residues in its metal binding domains (MBD). To elucidate the role of the various domains of ATP7B in its cDDP-induced trafficking we expressed a series of mCherry-tagged variants of ATP7B in HEK293T cells and analyzed their subcellular localization in basal media and after a 1 h exposure to 30 µM cDDP. The wild type ATP7B and a variant in which the cysteines in the CXXC motifs of MBD 1-5 were converted to serines trafficked out of the trans-Golgi (TGN) when exposed to cDDP. Conversion of the cysteines in all 6 of the CXXC motifs to serines, or in only the sixth MBD, rendered ATP7B incapable of trafficking on exposure to cDDP. Truncation of MBD1-5 or MBD1-6 resulted in the loss of TGN localization. Addition of the first 63 amino acids of ATP7B to these variants restored TGN localization to a great extent and enabled the MBD1-5 variant to undergo cDDP-induced trafficking. A variant of ATP7B in which the aspartate 1027 residue in the phosphorylation domain was converted to glutamine localized to the TGN but was incapable of cDDP-induced trafficking. These results demonstrate that the CXXC motif in the sixth MBD and the catalytic activity of ATP7B are required for cDDP-induced trafficking as they are for Cu-induced redistribution of ATP7B; this provides further evidence that cDDP mimics Cu with respect to the molecular mechanisms by they control the subcellular distribution of ATP7B.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Transporte de Catión/química , Cisplatino/química , Metales/química , Secuencias de Aminoácidos , Ácido Aspártico , Catálisis , Cobre/química , ATPasas Transportadoras de Cobre , Glutatión/química , Células HEK293 , Humanos , Microscopía Fluorescente , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Factores de Tiempo , Red trans-Golgi/química
6.
J Inorg Biochem ; 110: 8-17, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22459168

RESUMEN

The copper (Cu) exporter ATP7B mediates resistance to cisplatin (cDDP) but details of the mechanism are unknown. We explored the role of the CXXC motifs in the metal binding domains (MBDs) of ATP7B by investigating binding of cDDP to the sixth metal binding domain (MBD6) or a variant in which the CXXC motif was converted to SXXS. Platinum measurement showed that cDDP bound to wild type MBD6 but not to the SXXS variant. Wild type ATP7B rendered ovarian 2008 cells resistant to cDDP. In 2008 and in HEK293T cells, wild type ATP7B trafficked from TGN to peripheral locations in response to Cu or cDDP. A variant in which the CXXC motifs in all 6 MBDs were converted to SXXS localized correctly to the TGN but failed to traffic when exposed to either Cu or cDDP. Deletion of either the first 5 MBDs or all 6 MBDs resulted in failure to localize to the TGN. Neither the SXXS variant nor the deletion variant was able to mediate resistance to cDDP. We conclude that cDDP binds to the CXXC motifs of ATP7B and that this interaction is essential to the trafficking of ATP7B and to its ability to mediate resistance to cDDP.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Antineoplásicos/farmacología , Proteínas de Transporte de Catión/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Proteínas de Transporte de Catión/genética , Línea Celular Tumoral , ATPasas Transportadoras de Cobre , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Transporte de Proteínas
7.
Appl Spectrosc ; 63(5): 483-93, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19470203

RESUMEN

A new spectroscopic system for direct photoluminescence of lanthanide ions (Ln(III)) through electronic transitions within the 4f(n) manifold is described. The system is based on an injection seeded frequency tripled (lambda = 355 nm) Nd:YAG pump laser coupled with a master oscillator power oscillator (MOPO). The MOPO delivers an average pulse energy of approximately 60 mJ/pulse, is continuously tunable from 425 to 690 nm (Signal) and 735 to 1800 nm (Idler) with a linewidth of <0.2 cm(-1), and has a pulse duration of 10-12 ns. Aqueous solutions containing two polyaminocarboxylate complexes, ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA), and Ln(3+) aqua ion for several lanthanides including Eu(III), Tb(III), Dy(III), and Sm(III)) are used as steady-state and time-resolved photoluminescence standards. The versatility of the instrument is demonstrated by excitation scans over a broad visible range for aqueous solutions of complexes of Eu(III), Dy(III), Sm(III), and Tb(III). The Eu(III) excitation band ((7)F(o)-->(5)D(o)) is recorded over a range of complex concentrations that are 1000-fold less than reported previously, including Eu(EDTA) (1.00 nM), Eu(DTPA) (1.00 nM), and Eu(III) aqua ion (50.0 nM). Emission spectra are recorded in the visible range for Ln(III) complexes at pH 6.5 and 1.00 mM. Excited-state lifetimes for the standards were constant as a function of concentration from 10.0 nM to 1.00 mM for Eu(EDTA) and Eu(DTPA) and from 100 nM to 1.00 mM for Eu(III) aqua ion. Photoluminescence lifetimes in H(2)O and D(2)O are recorded and used to calculate the number of bound water molecules for all complexes.

8.
J Inorg Biochem ; 103(1): 64-71, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18952297

RESUMEN

The macrocyclic ligand, 1,4-bis((1-oxa-4,7,10-triazacyclododecan-7-yl)methyl)benzene (L1) is prepared. L1 binds two Zn(II) ions at neutral pH to form Zn(2)(L1) as studied by using pH-potentiometric titrations. Zn(2)(L1) binds two uridines at pH 7.0, I=0.100M (NaCl) and the mononuclear analog Zn(L2) (L2=1-oxa-4,7,10-triazacyclododecane) binds a single uridine; dissociation constants for both complexes are in the millimolar range. Both complexes promote the cleavage of a simple RNA analog lacking a nucleobase (HpPNP=2-hydroxypropyl-4-nitrophenylphosphate), and a uridine containing RNA analog UpPNP (uridine-3'-4-nitrophenylphosphate). Plots of the first-order rate constant for cleavage of HpPNP as a function of Zn(L2) concentration from 0.5mM to 20.0mM are linear, consistent with weak complexation to substrate K(d)>20mM. In contrast, first-order rate constants for cleavage of UpPNP by Zn(L2) or Zn(2)(L1) over similar concentration ranges exhibit a downward curvature, consistent with the formation of a complex between catalyst and UpPNP. Comparison of second-order rate constants (k(2)=k(cat)/K(d)) shows that the dinuclear complex Zn(2)(L1) is a better catalyst than Zn(L2) for both HpPNP and UpPNP cleavage.


Asunto(s)
Compuestos Organometálicos/química , ARN/química , Uridina/química , Zinc/química , Catálisis , Cinética , Ligandos , Compuestos Organometálicos/síntesis química
9.
Dalton Trans ; (34): 3804-11, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17712447

RESUMEN

Mononuclear complexes between Zn(2+) and the following four macrocycles were prepared: 1,4,7,10-tetraazacyclododecane (1), 1-oxa-4,7,10-triazacyclododecane (2), 1,5,9-triazacyclododecane (3) and 1-hydroxyethyl-1,4,7-triazacyclononane (4). The pH rate profiles of values of the observed second-order rate constant log (k(Zn))(app) for Zn(X)(OH(2))-catalyzed cleavage (X = 1, 2, 3 and 4) of 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) show downward breaks centered at the pK(a) for ionization of the respective zinc bound water. At low pH, where the rate acceleration for the catalyzed reaction is largest, the stabilizing interaction between the catalyst and the bound transition state is 5.7, 7.4, 7.4 and 5.9 kcal mol(-1) for the reactions catalyzed by Zn(1)(OH(2)), Zn(2)(OH(2)), Zn(3)(OH(2)) and Zn(4)(OH(2)), respectively. The interactions between the metal cation and the macrocycle cause either a modest increase or reduction in transition state stabilization compared with 6.6 kcal mol(-1) stabilization for catalysis by Zn(OH(2))(6). The best Zn(II)-macrocycle catalysts are those for which the interactions between the metal ion and macrocycle are the weakest. Inhibition studies show that each of the four catalysts form complexes with phosphate and oxalate dianions with a much higher affinity than diethyl phosphate monoanion, consistent with stronger interaction of the catalysts with the transition state dianion compared with the substrate monoanion HpPNP. The pH-dependence of methyl phosphate inhibition of Zn(2) catalyzed cleavage of HpPNP shows that only the Zn(2)(OH(2)) species binds the inhibitor. This result is consistent with a mechanism that has Zn(2)(OH(2)) as the active catalytic species.


Asunto(s)
ARN/química , Zinc/química , Catálisis , Concentración de Iones de Hidrógeno , Hidróxidos/química , Indicadores y Reactivos , Ligandos , Potenciometría , Agua/química
10.
J Inorg Biochem ; 101(6): 925-34, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17462740

RESUMEN

Two macrocycles (1 and 2) are prepared that incorporate pendent groups in macrocycle 3 (3=1-oxa-4,7,10-triazacyclododecane) with the goal of studying the effect of these pendent groups on metal ion complexation, solution chemistry and catalysis. Zn(1) contains a macrocyclic ligand with a pendent acridine group and Zn(2) has an appended methyl group. Water ligand pK(a) values for Zn(1) (6.7) and Zn(2) (7.3) are lower than that of Zn(3) (7.7). Zn(II) complexes of 1 and 2 are studied as catalysts for the cleavage of 2-hydroxypropyl 4-nitrophenylphosphate (HpPNP), an RNA analog. Zn(2) has a lower catalytic activity over the pH range 7-10 for cleavage of HpPNP compared to the parent macrocyclic complex, Zn(3). In contrast, Zn(1) has a threefold larger rate constant at pH 7.0 compared to Zn(2), attributed to the presence of a catalytic species which has a protonated acridine amino group. The binding constant of 1.5mM at pH 8.0 for formation of the Zn(2)-uridine adduct is similar to that for Zn(3), suggesting that N-alkylation of the macrocyclic ligand does not interfere with binding of the Zn(II) complex to uridine groups. Binding of cytidine to Zn(2) was not detectable under similar conditions up to 25mM nucleoside. Binding experiments under similar conditions could not be carried out for adenosine or guanosine due to their low solubility.


Asunto(s)
Acridinas/química , ARN/química , Zinc/química , Catálisis , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
11.
Inorg Chem ; 44(25): 9397-404, 2005 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-16323926

RESUMEN

Zn(II) complexes of 1-oxa-4,7,10-triazacyclododecane (12[ane]N3O), 1,5,9-triazacyclododecane (12[ane]N3), and 1-hydroxyethyl-1,4,7-triazacyclononane (9[ane]N3OH) promote cleavage of the RNA analogue, 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) at pH 8.0, I=0.10 M (NaCl), 25 degrees C with second-order rate constants of 8.9x10(-3), 9.0x10(-3), and 3.3x10(-3) M-1 s-1, respectively. Cleavage of HpPNP by these catalysts is inhibited by uridine with inhibition constants (Ki) of 1.2, 0.46, and 45 mM, respectively, under these conditions. Binding constants derived from these inhibition constants are 2-200-fold larger than those for binding of related Zn(II) complexes to phosphate diesters under similar conditions, suggesting that uridine sequences in RNA will inhibit Zn(II)-catalyzed cleavage by competing with phosphate diester binding sites. Further studies are carried out that utilize pH-potentiometric titrations to monitor uridine binding to five Zn(II) macrocyclic complexes in aqueous solution at 25 degrees C, I=0.10 M (NaCl). The data are consistent with binding of the Zn(II) complexes to the N3-deprotonated form of uridine to give log KU.-values of 5.29, 4.57, 4.56, 3.47, and 2.65 for the Zn(II) complexes of 12[ane]N3, 12[ane]N4, 12[ane]N3O, 15[ane]N3O2, and 9[ane]N3OH, respectively (12[ane]N4=1,4,7,10-tetraazacyclododecane, 15[ane]N3O2=1,4-dioxa-7,10,13-triazacyclopentadecane). For the five Zn(II) complexes studied, there is a linear relationship between uridine anion binding constants and hydroxide binding constants.


Asunto(s)
Compuestos Macrocíclicos/química , Compuestos Organometálicos/química , ARN/química , Uridina/química , Zinc/química , Catálisis , Compuestos Macrocíclicos/metabolismo , Estructura Molecular , Compuestos Organometálicos/metabolismo , Uridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...