Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2732: 165-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38060125

RESUMEN

Diseases caused by Capripoxviruses (CaPVs) are of great economic importance in sheep, goats, and cattle. Since CaPV strains are serologically indistinguishable and genetically highly homologous, typing of closely related strains can only be achieved by whole-genome sequencing. In this chapter, we describe a robust, cost-effective, and widely applicable protocol for reconstructing (nearly) complete CaPV genomes directly from clinical samples or commercial vaccine batches in less than a week. Taking advantage of the genetic similarity of CaPVs, a set of pan-CaPVs long-range PCRs was developed that covers the entire genome with only a limited number of tiled amplicons. The resulting amplicons can be sequenced on all currently available high-throughput sequencing platforms. As an example, we have included a detailed protocol for performing nanopore sequencing and a pipeline for assembling the resulting tiled amplicon data.


Asunto(s)
Capripoxvirus , Infecciones por Poxviridae , Enfermedades de las Ovejas , Vacunas Virales , Animales , Ovinos , Bovinos , Capripoxvirus/genética , Reacción en Cadena de la Polimerasa/métodos , Vacunas Virales/genética , Secuenciación Completa del Genoma , Cabras/genética
2.
J Virol ; 97(11): e0139423, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37905838

RESUMEN

IMPORTANCE: Lumpy skin disease virus (LSDV) has a complex epidemiology involving multiple strains, recombination, and vaccination. Its DNA genome provides limited genetic variation to trace outbreaks in space and time. Sequencing of LSDV whole genomes has also been patchy at global and regional scales. Here, we provide the first fine-grained whole genome sequence sampling of a constrained LSDV outbreak (southeastern Europe, 2015-2017), which we analyze along with global publicly available genomes. We formally evaluate the past occurrence of recombination events as well as the temporal signal that is required for calibrating molecular clock models and subsequently conduct a time-calibrated spatially explicit phylogeographic reconstruction. Our study further illustrates the importance of accounting for recombination events before reconstructing global and regional dynamics of DNA viruses. More LSDV whole genomes from endemic areas are needed to obtain a comprehensive understanding of global LSDV dispersal dynamics.


Asunto(s)
Genoma Viral , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Brotes de Enfermedades , ADN Viral/genética , Europa (Continente)/epidemiología , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/genética , Filogenia
3.
Animals (Basel) ; 13(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36670856

RESUMEN

Two adult female hippos in Zoo Antwerp who were naturally infected with SARS-CoV-2 showed nasal discharge for a few days. Virus was detected by immunocytochemistry and PCR in nasal swab samples and by PCR in faeces and pool water. Serology was also positive. No treatment was necessary.

4.
Emerg Infect Dis ; 29(2): 351-359, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36692362

RESUMEN

The high economic impact and zoonotic potential of avian influenza call for detailed investigations of dispersal dynamics of epidemics. We integrated phylogeographic and epidemiologic analyses to investigate the dynamics of a low pathogenicity avian influenza (H3N1) epidemic that occurred in Belgium during 2019. Virus genomes from 104 clinical samples originating from 85% of affected farms were sequenced. A spatially explicit phylogeographic analysis confirmed a dominating northeast to southwest dispersal direction and a long-distance dispersal event linked to direct live animal transportation between farms. Spatiotemporal clustering, transport, and social contacts strongly correlated with the phylogeographic pattern of the epidemic. We detected only a limited association between wind direction and direction of viral lineage dispersal. Our results highlight the multifactorial nature of avian influenza epidemics and illustrate the use of genomic analyses of virus dispersal to complement epidemiologic and environmental data, improve knowledge of avian influenza epidemiologic dynamics, and enhance control strategies.


Asunto(s)
Epidemias , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Gripe Aviar/epidemiología , Bélgica/epidemiología , Trazado de Contacto , Filogeografía , Filogenia , Pollos
5.
Viruses ; 14(7)2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35891412

RESUMEN

From 2017 to 2019, several vaccine-like recombinant strains of lumpy skin disease virus (LSDV) were discovered in Kazakhstan and neighbouring regions of Russia and China. Shortly before their emergence, the authorities in Kazakhstan launched a mass vaccination campaign with the Neethling-based Lumpivax vaccine. Since none of the other countries in the affected region had used a homologous LSDV vaccine, it was soon suspected that the Lumpivax vaccine was the cause of these unusual LSDV strains. In this study, we performed a genome-wide molecular analysis to investigate the composition of two Lumpivax vaccine batches and to establish a possible link between the vaccine and the recent outbreaks. Although labelled as a pure Neethling-based LSDV vaccine, the Lumpivax vaccine appears to be a complex mixture of multiple CaPVs. Using an iterative enrichment/assembly strategy, we obtained the complete genomes of a Neethling-like LSDV vaccine strain, a KSGP-like LSDV vaccine strain and a Sudan-like GTPV strain. The same analysis also revealed the presence of several recombinant LSDV strains that were (almost) identical to the recently described vaccine-like LSDV strains. Based on their InDel/SNP signatures, the vaccine-like recombinant strains can be divided into four groups. Each group has a distinct breakpoint pattern resulting from multiple recombination events, with the number of genetic exchanges ranging from 126 to 146. The enormous divergence of the recombinant strains suggests that they arose during seed production. The recent emergence of vaccine-like LSDV strains in large parts of Asia is, therefore, most likely the result of a spillover from animals vaccinated with the Lumpivax vaccine.


Asunto(s)
Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Vacunas Virales , Animales , Asia/epidemiología , Bovinos , Vacunas Atenuadas , Vacunas Virales/genética
6.
J Virol Methods ; 301: 114464, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032481

RESUMEN

The diseases caused by capripoxviruses (CaPVs) are of major economic concern in sheep, goat and cattle as they are inexorably spreading into non-endemic regions. As CaPV strains are serologically indistinguishable and genetically highly homologous, typing closely related strains can only be achieved by whole genome sequencing. Unfortunately the number of publicly available genomes remains low as most sequencing methods rely on virus isolation. Therefore, we developed a robust, cost-effective and widely applicable method that allows to generate (nearly) complete CaPV genomes directly from clinical samples or commercial vaccine batches. A set of pan-CaPVs long-range PCRs spanning the entire genome was designed to generate PCR amplicons that can be sequenced on commonly used high-throughput sequencing platforms: MiSeq (Illumina), RSII (PacBio) and MinION (Oxford Nanopore Technologies). The robustness of the LR-PCR strategy was evaluated for all 3 members of CaPV directly from a variety of samples, including clinical samples (N = 7), vaccine batches (N = 6), and virus isolates (N = 2). The sequencing method described here allows to reconstruct (nearly) complete CaPV genomes in less than a week and will aid researchers studying closely-related CaPV strains worldwide.


Asunto(s)
Capripoxvirus , Enfermedades de las Ovejas , Animales , Capripoxvirus/genética , Bovinos , Análisis Costo-Beneficio , Secuenciación de Nucleótidos de Alto Rendimiento , Ovinos , Secuenciación Completa del Genoma
7.
Microbiol Resour Announc ; 10(48): e0089721, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34854705

RESUMEN

Lumpy skin disease virus (LSDV) causes a severe, systemic, and economically important disease in cattle. Here, we report coding-complete sequences of recombinant LSDVs from four outbreaks in October and November 2020 in northeastern Vietnam.

8.
Viruses ; 13(12)2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34960688

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most widespread and economically devastating diseases in the swine industry. Typing circulating PRRSV strains by means of sequencing is crucial for developing adequate control strategies. Most genetic studies only target the highly variable open reading frame (ORF) 5, for which an extensive database is available. In this study, we performed whole-genome sequencing (WGS) on a collection of 124 PRRSV-1 positive serum samples that were collected over a 5-year period (2015-2019) in Belgium. Our results show that (nearly) complete PRRSV genomes can be obtained directly from serum samples with a high success rate. Analysis of the coding regions confirmed the exceptionally high genetic diversity, even among Belgian PRRSV-1 strains. To gain more insight into the added value of WGS, we performed phylogenetic cluster analyses on separate ORF datasets as well as on a single, concatenated dataset (CDS) containing all ORFs. A comparison between the CDS and ORF clustering schemes revealed numerous discrepancies. To explain these differences, we performed a large-scale recombination analysis, which allowed us to identify a large number of potential recombination events that were scattered across the genome. As PRRSV does not contain typical recombination hot-spots, typing PRRSV strains based on a single ORF is not recommended. Although the typing accuracy can be improved by including multiple regions, our results show that the full genetic diversity among PRRSV strains can only be captured by analysing (nearly) complete genomes. Finally, we also identified several vaccine-derived recombinant strains, which once more raises the question of the safety of these vaccines.


Asunto(s)
Sistemas de Lectura Abierta , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Secuenciación Completa del Genoma , Animales , Bélgica , Análisis por Conglomerados , ADN Complementario , Variación Genética , Genoma Viral , Mutagénesis Insercional , Filogenia , Recombinación Genética , Análisis de Secuencia de ADN , Eliminación de Secuencia , Porcinos
9.
Virus Genes ; 57(6): 529-540, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626348

RESUMEN

Infectious bronchitis virus (IBV, genus Gammacoronavirus) causes an economically important and highly contagious disease in chicken. Random primed RNA sequencing was applied to two IBV positive clinical samples and one in ovo-passaged virus. The virome of a cloacal swab pool was dominated by IBV (82% of viral reads) allowing de novo assembly of a GI-13 lineage complete genome with 99.95% nucleotide identity to vaccine strain 793B. In addition, substantial read counts (16% of viral reads) allowed the assembly of a near-complete chicken astrovirus genome, while lower read counts identified the presence of chicken calicivirus and avian leucosis virus. Viral reads in a respiratory/intestinal tissue pool were distributed between IBV (22.53%), Sicinivirus (Picornaviridae, 24%), and avian leucosis virus (37.04%). A complete IBV genome with 99.95% nucleotide identity to vaccine strain H120 (lineage GI-1), as well as a near-complete avian leucosis virus genome and a partial Sicinivirus genome were assembled from the tissue sample data. Lower read counts identified chicken calicivirus, Avibirnavirus (infectious bursal disease virus, assembling to 98.85% of segment A and 69.66% of segment B closely related to D3976/1 from Germany, 2017) and avian orthoreovirus, while three avian orthoavulavirus 1 reads confirmed prior real-time RT-PCR result. IBV sequence variation analysis identified both fixed and minor frequency variations in the tissue sample compared to its in ovo-passaged virus. Metagenomic methods allow the determination of complete coronavirus genomes from clinical chicken samples while providing additional insights in RNA virus sequence diversity and coinfecting viruses potentially contributing to pathogenicity.


Asunto(s)
Pollos/virología , Genómica , Virus de la Bronquitis Infecciosa/clasificación , Virus de la Bronquitis Infecciosa/genética , Viroma/genética , Animales , Virus de la Bronquitis Infecciosa/patogenicidad , Enfermedades de las Aves de Corral/virología
10.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34575988

RESUMEN

Maedi-Visna-like genotype A strains and Caprine arthritis encephaltis-like genotype B strains are small ruminant lentiviruses (SRLV) which, for incompletely understood reasons, appear to be more virulent in sheep and goats, respectively. A 9-month in vivo infection experiment using Belgian genotype A and B SRLV strains showed that almost all homologous (genotype A in sheep; genotype B in goats) and heterologous (genotype A in goats; genotype B in sheep) intratracheal inoculations resulted in productive infection. No differences in viremia and time to seroconversion were observed between homologous and heterologous infections. Higher viral loads and more severe lesions in the mammary gland and lung were however detected at 9 months post homologous compared to heterologous infection which coincided with strongly increased IFN-γ mRNA expression levels upon homologous infection. Pepscan analysis revealed a strong antibody response against immune-dominant regions of the capsid and surface proteins upon homologous infection, which was absent after heterologous infection. These results inversely correlated with protection against virus replication in target organs and observed histopathological lesions, and thus require an in-depth evaluation of a potential role of antibody dependent enhancement in SRLV infection. Finally, no horizontal intra- and cross-species SRLV transmission to contact animals was detected.


Asunto(s)
Virus de la Artritis-Encefalitis Caprina/fisiología , Genotipo , Enfermedades de las Cabras/inmunología , Cabras , Inmunidad Humoral , Neumonía Intersticial Progresiva de los Ovinos/inmunología , Ovinos , Replicación Viral/inmunología , Virus Visna-Maedi/fisiología , Animales , Anticuerpos Antivirales/inmunología , Femenino , Enfermedades de las Cabras/genética , Enfermedades de las Cabras/patología , Enfermedades de las Cabras/virología , Cabras/inmunología , Cabras/virología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Glándulas Mamarias Animales/inmunología , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/virología , Neumonía Intersticial Progresiva de los Ovinos/genética , Neumonía Intersticial Progresiva de los Ovinos/patología , Neumonía Intersticial Progresiva de los Ovinos/virología , Ovinos/inmunología , Ovinos/virología , Especificidad de la Especie , Carga Viral/inmunología
11.
Microbiol Resour Announc ; 10(14)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833026

RESUMEN

Bluetongue is one of the major diseases of ruminants listed by the World Organisation for Animal Health. Bluetongue virus serotype 8 (BTV-8) has been considered enzootic in France since 2018. Here, we report the nearly complete genome sequences of two BTV-8 isolates from the 2020 outbreak in the Grand Duchy of Luxembourg.

12.
Microbiol Resour Announc ; 9(43)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093046

RESUMEN

Lumpy skin disease (LSD) is an emerging cattle disease with serious economic consequences. We report the complete coding sequence of LSD virus 210LSD-249/BUL/16, detected in a blood sample from a diseased cow during an outbreak in Bulgaria (Kabile Village, Yambol Region) in June 2016.

13.
J Gen Virol ; 101(5): 510-522, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32242791

RESUMEN

Noroviruses are recognized as the major cause of non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Recombination can create considerable changes in a viral genome, potentially eliciting a fitness cost, which must be compensated via the adaptive capacity of a recombinant virus. We previously described replicative fitness reduction of the first in vitro generated WU20-CW1 recombinant murine norovirus, RecMNV. In this follow-up study, RecMNV's capability of replicative fitness recuperation and genetic characteristics of RecMNV progenies at early and late stages of an adaptation experiment were evaluated. Replicative fitness regain of the recombinant was demonstrated via growth kinetics and plaque size differences between viral progenies prior to and post serial in vitro passaging. Point mutations at consensus and sub-consensus population levels of early and late viral progenies were characterized via next-generation sequencing and putatively associated to fitness changes. To investigate the effect of genomic changes separately and in combination in the context of a lab-generated inter-MNV infectious virus, mutations were introduced into a recombinant WU20-CW1 cDNA for subsequent DNA-based reverse genetics recovery. We thus associated fitness loss of RecMNV to a C7245T mutation and functional VP2 (ORF3) truncation and demonstrated individual and cumulative compensatory effects of one synonymous OFR2 and two non-synonymous ORF1 consensus-level mutations acquired during successive rounds of in vitro replication. Our data provide evidence of viral adaptation in a controlled environment via genetic drift after genetic shift induced a fitness cost of an infectious recombinant norovirus.


Asunto(s)
Norovirus/genética , Replicación Viral/genética , Animales , Infecciones por Caliciviridae/virología , Línea Celular , ADN Complementario/genética , Estudios de Seguimiento , Flujo Genético , Genoma Viral/genética , Ratones , Mutación Puntual/genética , Células RAW 264.7 , ARN Viral/genética
14.
Microbiol Resour Announc ; 9(4)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974154

RESUMEN

Lumpy skin disease virus (LSDV) causes an economically important disease in cattle. Here, we report the complete coding sequence of the LSDV isolate Kubash/KAZ/16, detected in a clinical sample from an infected cow from the outbreak reported on 7 July 2016 in Kazakhstan (Atyrau Region).

15.
Arch Virol ; 163(6): 1701-1703, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29442227

RESUMEN

Using random high-throughput RNA sequencing, the complete coding sequence of a novel picorna-like virus (a 9,228-nt contig containing 212,202 reads) was determined from a blackbird (Turdus merula) infected with Usutu virus. This sequence shares only 36% amino acid sequence identity with its closest homolog, arivirus 1, (an unclassified member of the order Picornavirales), and shares its dicistronic genome arrangement. The new virus was therefore tentatively named "blackbird arilivirus" (ari-like virus). The nearly complete genome sequence consists of at least 9,228 nt and contains two open reading frames (ORFs) encoding the nonstructural polyprotein (2235 amino acids) and structural polyprotein (769 amino acids). Two TaqMan RT-qPCR assays specific for ORF1 confirmed the presence of high levels of this novel virus in the original sample. Nucleotide composition analysis suggests that blackbird arilivirus is of dietary (plant) origin.


Asunto(s)
Enfermedades de las Aves/virología , Infecciones por Flavivirus/veterinaria , Flavivirus/genética , Genoma Viral , Passeriformes/virología , Infecciones por Picornaviridae/veterinaria , Picornaviridae/genética , Animales , Bélgica , Mapeo Cromosómico , Coinfección , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , Infecciones por Flavivirus/virología , Sistemas de Lectura Abierta , Filogenia , Picornaviridae/clasificación , Picornaviridae/aislamiento & purificación , Infecciones por Picornaviridae/virología , Plantas/virología , Secuenciación Completa del Genoma
16.
Genome Announc ; 6(7)2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449384

RESUMEN

The complete genome sequences of 5 foot-and-mouth disease viruses of serotype A are reported here. These viruses originate from outbreaks in northern Nigeria in 2013 to 2015 and belong to the A/AFRICA/G-IV lineage.

17.
Genome Announc ; 5(42)2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29051242

RESUMEN

The complete genome sequences of four foot-and-mouth disease viruses of South African territories 1 (SAT 1) serotype are reported. These viruses originate from an outbreak in Nigeria in 2015 and belong to the novel SAT 1 topotype X from the west and central African virus pool.

18.
Genome Announc ; 5(29)2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28729259

RESUMEN

Lumpy skin disease virus (LSDV) causes an economically important disease in cattle. Here, we report the complete genome sequence of the first LSDV isolate identified in mainland Europe. LSDV isolate Evros/GR/15 was isolated from the first cases reported on 18 August 2015 in the Evros region, Greece.

20.
Genome Announc ; 4(6)2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27834707

RESUMEN

Lumpy skin disease virus (LSDV) causes an economically important disease in cattle. Here, we report the complete genome sequences of three LSDV strains obtained directly from the live attenuated vaccines: Lumpyvax (MSD Animal Health), Herbivac LS (Deltamune) and Lumpy Skin Disease Vaccine (Onderstepoort Biological Products).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...