Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 551, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759613

RESUMEN

Regulation of RNA processing contributes profoundly to tissue development and physiology. Here, we report that serine-arginine-rich splicing factor 1 (SRSF1) is essential for hepatocyte function and survival. Although SRSF1 is mainly known for its many roles in mRNA metabolism, it is also crucial for maintaining genome stability. We show that acute liver damage in the setting of targeted SRSF1 deletion in mice is associated with the excessive formation of deleterious RNA-DNA hybrids (R-loops), which induce DNA damage. Combining hepatocyte-specific transcriptome, proteome, and RNA binding analyses, we demonstrate that widespread genotoxic stress following SRSF1 depletion results in global inhibition of mRNA transcription and protein synthesis, leading to impaired metabolism and trafficking of lipids. Lipid accumulation in SRSF1-deficient hepatocytes is followed by necroptotic cell death, inflammation, and fibrosis, resulting in NASH-like liver pathology. Importantly, SRSF1-depleted human liver cancer cells recapitulate this pathogenesis, illustrating a conserved and fundamental role for SRSF1 in preserving genome integrity and tissue homeostasis. Thus, our study uncovers how the accumulation of detrimental R-loops impedes hepatocellular gene expression, triggering metabolic derangements and liver damage.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Factores de Empalme de ARN/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , ARN/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , ARN Mensajero/metabolismo , Empalme Alternativo
2.
Sci Adv ; 7(17)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33883138

RESUMEN

Nuclear receptors farnesoid X receptor (FXR) and small heterodimer partner (SHP) are key regulators of metabolism. Here, we report a previously unknown function for the hepatic FXR-SHP axis in controlling protein N-linked glycosylation. Transcriptome analysis in liver-specific Fxr-Shp double knockout (LDKO) livers revealed induction of genes encoding enzymes in the N-glycosylation pathway, including Mgat5, Fut8, St3gal6, and St6gal1 FXR activation suppressed Mgat5, while Shp deletion induced St3gal6 and St6gal1 Increased percentages of core-fucosylated and triantennary glycan moieties were seen in LDKO livers, and proteins with the "hyperglycoforms" preferentially localized to exosomes and lysosomes. This up-regulation of N-glycosylation machinery was specific to the Golgi apparatus and not the endoplasmic reticulum. The increased glycan complexity in the LDKO correlated well with dilated unstacked Golgi ribbons and alterations in the secretion of albumin, cholesterol, and triglycerides. Our findings demonstrate a role for the FXR-SHP axis in maintaining glycoprotein diversity in the liver.


Asunto(s)
Hígado , Receptores Citoplasmáticos y Nucleares , Colesterol/metabolismo , Hígado/metabolismo , Polisacáridos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Activación Transcripcional
3.
JHEP Rep ; 2(5): 100140, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32875282

RESUMEN

BACKGROUND & AIMS: Liver diseases are caused by many factors, such as genetics, nutrition, and viruses. Therefore, it is important to delineate transcriptomic changes that occur in various liver diseases. METHODS: We performed high-throughput sequencing of mouse livers with diverse types of injuries, including cholestasis, diet-induced steatosis, and partial hepatectomy. Comparative analysis of liver transcriptome from mice and human samples of viral infections (HBV and HCV), alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH), and biliary atresia revealed distinct and overlapping gene profiles associated with liver diseases. We hypothesised that discrete molecular signatures could be utilised to assess therapeutic outcomes. We focused on cholestasis to test and validate the hypothesis using pharmacological approaches. RESULTS: Here, we report significant overlap in the expression of inflammatory and proliferation-related genes across liver diseases. However, cholestatic livers were unique and displayed robust induction of genes involved in drug metabolism. Consistently, we found that constitutive androstane receptor (CAR) activation is crucial for the induction of the drug metabolic gene programme in cholestasis. When challenged, cholestatic mice were protected against zoxazolamine-induced paralysis and acetaminophen-induced hepatotoxicity. These protective effects were diminished upon inhibition of CAR activity. Further, drug metabolic genes were also induced in the livers from a subset of biliary atresia patients, but not in HBV and HCV infections, AH, or NASH. We also found a higher expression of CYP2B6, a CAR target, in the livers of biliary atresia patients, underscoring the clinical importance of our findings. CONCLUSIONS: Comparative transcriptome analysis of different liver disorders revealed specific induction of phase I and II metabolic genes in cholestasis. Our results demonstrate that CAR activation may lead to variations in drug metabolism and clinical outcomes in biliary atresia. LAY SUMMARY: Transcriptomic analysis of diverse liver diseases revealed alterations in common and distinct pathways. Specifically, in cholestasis, we found that detoxification genes and their activity are increased. Thus, cholestatic patients may have an unintended consequence on drug metabolism and not only have a beneficial effect against liver toxicity, but also may require adjustments to their therapeutic dosage.

4.
Hepatology ; 65(1): 189-201, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27774647

RESUMEN

Cardiac dysfunction in patients with liver cirrhosis is strongly associated with increased serum bile acid concentrations. Here we show that excess bile acids decrease fatty acid oxidation in cardiomyocytes and can cause heart dysfunction, a cardiac syndrome that we term cholecardia. Farnesoid X receptor; Small Heterodimer Partner double knockout mice, a model for bile acid overload, display cardiac hypertrophy, bradycardia, and exercise intolerance. In addition, double knockout mice exhibit an impaired cardiac response to catecholamine challenge. Consistent with this decreased cardiac function, we show that elevated serum bile acids reduce cardiac fatty acid oxidation both in vivo and ex vivo. We find that increased bile acid levels suppress expression of proliferator-activated receptor-γ coactivator 1α, a key regulator of fatty acid metabolism, and that proliferator-activated receptor-γ coactivator 1α overexpression in cardiac cells was able to rescue the bile acid-mediated reduction in fatty acid oxidation genes. Importantly, intestinal bile acid sequestration with cholestyramine was sufficient to reverse the observed heart dysfunction in the double knockout mice. CONCLUSIONS: Decreased proliferator-activated receptor-γ coactivator 1α expression contributes to the metabolic dysfunction in cholecardia so that reducing serum bile acid concentrations may be beneficial against the metabolic and pathological changes in the heart. (Hepatology 2017;65:189-201).


Asunto(s)
Ácidos y Sales Biliares/fisiología , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Animales , Ácidos y Sales Biliares/sangre , Cardiomiopatías/sangre , Cardiomiopatías/fisiopatología , Ácidos Grasos/metabolismo , Masculino , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...