Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virusdisease ; 32(4): 657-665, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34901322

RESUMEN

The non-structural proteins (nsPs) of the chikungunya virus (CHIKV) form the virus's replication complex. They are known to participate in several functions that allow efficient replication of the virus in diverse host systems. One such function is evading the host defense system such as RNA interference (RNAi). Two nsPs of CHIKV, namely, nsP2 and nsP3, were found to suppress the host/vector RNAi machinery and exhibit RNAi suppressor activity. The present study was undertaken to identify interacting partners of CHIKV-nsP3 in Aedes aegypti. We performed pull-down assays with the mass spectrometry approach and showed the interaction of CHIKV-nsP3 with several Aedes proteins. Further co-immunoprecipitation assays revealed that CHIKV-nsP3 interacts with RM62F, a DEAD-box containing RNA known to play roles in multiple gene regulatory processes such as alternative splicing, RNA release, and also is a component of Ago2-RISC complex. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13337-021-00734-y.

2.
Sci Rep ; 6: 38065, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27901124

RESUMEN

RNAi pathway is an antiviral defence mechanism employed by insects that result in degradation of viral RNA thereby curbing infection. Several viruses including flaviviruses encode viral suppressors of RNAi (VSRs) to counteract the antiviral RNAi pathway. Till date, no VSR has been reported in alphaviruses. The present study was undertaken to evaluate chikungunya virus (CHIKV) proteins for RNAi suppressor activity. We systematically analyzed all nine CHIKV proteins for RNAi suppressor activity using Sf21 RNAi sensor cell line based assay. Two non-structural proteins, namely, nsP2 and nsP3 were found to exhibit RNAi suppressor activity. We further validated the findings in natural hosts, namely in Aedes and in mammalian cell lines and further through EMSA and Agrobacterium infiltration in GFP silenced transgenic tobacco plants. Domains responsible for maximum RNAi suppressor activity were also identified within these proteins. RNA binding motifs in these domains were identified and their participation in RNAi suppression evaluated using site directed mutagenesis. Sequence alignment of these motifs across all species of known alphaviruses revealed conservation of these motifs emphasizing on a similar role of action in other species of alphaviruses as well. Further validation of RNAi suppressor activity of these proteins awaits establishment of specific virus infection models.


Asunto(s)
Virus Chikungunya/metabolismo , Interferencia de ARN , Proteínas no Estructurales Virales/metabolismo , Aedes/metabolismo , Aedes/virología , Animales , Virus Chikungunya/genética , Células HEK293 , Humanos , Células Sf9 , Spodoptera , Proteínas no Estructurales Virales/genética
3.
Virol J ; 13: 86, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251040

RESUMEN

BACKGROUND: RNA viruses are characterized by high rate of mutations mainly due to the lack of proofreading repair activities associated with its RNA-dependent RNA-polymerase (RdRp). In case of arboviruses, this phenomenon has lead to the existence of mixed population of genomic variants within the host called quasi-species. The stability of strains within the quasi-species lies on mutations that are positively selected which in turn depend on whether these mutations are beneficial in either or both hosts. Coevolution of amino acids (aa) is one phenomenon that leads to establishment of favorable traits in viruses and leading to their fitness. RESULTS: Fourteen CHIKV clinical samples collected over three years were subjected to RT-PCR, the four non-structural genes amplified and subjected to various genetic analyses. Coevolution analysis showed 30 aa pairs coevolving in nsP1, 23 aa pairs coevolving in nsP2, 239 in nsP3 and 46 aa coevolving pairs in nsP4 when each non-structural protein was considered independently. Further analysis showed that 705 amino acids pairs of the non-structural polyproteins coevolved together with a correlation coefficient of ≥0.5. Functional relevance of these coevolving amino acids in all the nonstructural proteins of CHIKV were predicted using Eukaryotic Linear Motifs (ELMs) of human. CONCLUSIONS: The present study was undertaken to study co-evolving amino acids in the non-structural proteins of chikungunya virus (CHIKV), an important arbovirus. It was observed that several amino acids residues were coevolving and shared common functions.


Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/genética , Evolución Molecular , Proteínas no Estructurales Virales/genética , Aminoácidos/genética , Virus Chikungunya/aislamiento & purificación , Humanos , Análisis de Secuencia de ADN
4.
Virol J ; 9: 100, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22632412

RESUMEN

BACKGROUND: Chikungunya (CHIK) is currently endemic in South and Central India and exist as co-infections with dengue in Northern India. In 2010, New Delhi witnessed an outbreak of CHIK in the months October-December. This was the first incidence of a dominant CHIK outbreak in Delhi and prompted us to characterize the Delhi virus strains. We have also investigated the evolution of CHIK spread in India. FINDINGS: Clinical samples were subjected to RT-PCR to detect CHIK viral RNA. The PCR amplified products were sequenced and the resulting sequences were genetically analyzed. Phylogenetic analysis based on partial sequences of the structural proteins E1 and E2 revealed that the viruses in the latest outbreak exhibited ECSA lineage. Two novel mutations, E1 K211E and E2 V264A were observed in all Delhi isolates. In addition, CHIKV sequences from eight states in India were analyzed along with Delhi sequences to map the genetic diversity of CHIKV within the country. Estimates of average evolutionary divergence within states showed varying divergence among the sequences both within the states and between the states. We identified distinct molecular signatures of the different genotypes of CHIKV revealing emergence of a new signature in the New Delhi clade. Statistical analyses and construction of evolutionary path of the virus within the country revealed gradual spread of one specific strain all over the country. CONCLUSION: This study has identified unique mutations in the E1 and E2 genes and has revealed the presence of ancestral CHIKV population with maximum diversity circulating in Maharashtra. The study has further revealed the trend of CHIK spread in India since its first report in 1963 and its subsequent reappearance in 2005.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/virología , Virus Chikungunya/clasificación , Virus Chikungunya/genética , Brotes de Enfermedades , Variación Genética , ARN Viral/genética , Virus Chikungunya/aislamiento & purificación , Análisis por Conglomerados , Humanos , India/epidemiología , Mutación Missense , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia , Proteínas Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...