Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dent J (Basel) ; 12(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38786540

RESUMEN

This study aims to investigate whether toothbrushes with fluoride-infused bristles have any (re)mineralisation effects on bovine enamel. Bovine incisors (N = 160) were extracted, and the buccal side of the crown was cut into dimensions of ~5 mm × 5 mm with a low-speed saw. These specimens were randomly allocated into four groups: half (80 teeth) were stored in demineralising solution (DM), and the other half were stored in deionised water (DW) for 96 h. Then, they were brushed with a force of 2.0 ± 0.1 N for five min with a manual toothbrush with either fluoride-infused (TF) or regular (TR) bristles. Microhardness (Vickers), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) were used to investigate the surfaces of the bovine enamel specimens before and after brushing. Two-way ANOVA was used to analyse the hardness data, and the pairwise comparison method was used to analyse the Ca/P ratio, for each group at α = 0.05. The results show that brushing with either of these toothbrushes increased the Vickers microhardness on DM and DW enamel (p < 0.001), whereas hydroxyapatite was revealed in all groups by XRD. The DM samples showed a significant increase (p < 0.05) in the Ca/P ratios after brushing with TR and TF. Conversely, under DW conditions, these ratios decreased significantly after brushing. In terms of the F atomic%, TF increased significantly. SEM revealed mineral deposition in the DM groups after toothbrushing. To conclude, toothbrushing effectively induces the microhardness of sound and demineralised enamel, while fluoride-infused bristles might be able to retain fluoride on the enamel surface.

2.
Dent Mater ; 39(12): 1105-1112, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839996

RESUMEN

OBJECTIVES: The aim of present study was to examine the effect of Porphyromonas gingivalis (P.g.) adhesion on dental zirconia by characterizing the physical and chemical properties. METHODS: Eighty polished-sintered zirconia discs were prepared and randomly distributed to 5 groups (n = 16): Zirconia cultured with - Group 1: broth containing P.g. for - 3 days; Group 2: 7 days; Group 3: broth (alone) for - 3 days; Group 4: 7 days; and Group 5: dry discs (negative control). After experimental period, broths were analyzed for pH and Zr release with inductively coupled plasma-optical emission spectroscopy (ICP-OES). The zirconia surface was evaluated by scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), water contact angle (WCA), and biaxial flexural strength (BFS). RESULTS: The mean pH with zirconia adhesion to P.g. group was significantly higher than the broth control (p < 0.05). As per ICP-OES, Zr ion/particulate release with P.g. adhesion to zirconia were significantly higher than the controls (p < 0.05). Post-experimental incubation, no defects were found on zirconia surfaces; tetragonal phase remained constant with no transformation to monoclinic phase but lower peak intensities were identified in experimental groups. WCA of zirconia surfaces with P.g. bacteria for 3 days (12.04° ± 2.05°) and 7 days (15.09° ± 2.95°) were significantly higher than zirconia surfaces immersed with broth (only) for 3 days (7.17° ± 1.09°) and 7 days (7.55° ± 0.65°), respectively (p < 0.05). BFS values of zirconia with P.g. for 3 days (632.57 ± 119.96 MPa) and 7 days (656.17 ± 100.29 MPa) were significantly lower than zirconia incubated in broth alone (765.01 ± 20.12 MPa) conditions (p < 0.05). SIGNIFICANCE: Under the conditions of present study, it can be concluded that P.g. adhesion on zirconia leads to structural alterations of dental zirconia further contributing to zirconia degradation.


Asunto(s)
Materiales Dentales , Porphyromonas gingivalis , Materiales Dentales/química , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Circonio/química , Agua , Propiedades de Superficie , Itrio/química , Cerámica/química
3.
Dent Mater ; 39(3): 320-332, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36822895

RESUMEN

OBJECTIVES: This study utilised an Artificial Intelligence (AI) method, namely 3D-Deep Convolutional Generative Adversarial Network (3D-DCGAN), which is one of the true 3D machine learning methods, as an automatic algorithm to design a dental crown. METHODS: Six hundred sets of digital casts containing mandibular second premolars and their adjacent and antagonist teeth obtained from healthy personnel were machine-learned using 3D-DCGAN. Additional 12 sets of data were used as the test dataset, whereas the natural second premolars in the test dataset were compared with the designs in (1) 3D-DCGAN, (2) CEREC Biogeneric, and (3) CAD for morphological parameters of 3D similarity, cusp angle, occlusal contact point number and area, and in silico fatigue simulations with finite element (FE) using lithium disilicate material. RESULTS: The 3D-DCGAN design and natural teeth had the lowest discrepancy in morphology compared with the other groups (root mean square value = 0.3611). The Biogeneric design showed a significantly (p < 0.05) higher cusp angle (67.11°) than that of the 3D-DCGAN design (49.43°) and natural tooth (54.05°). No significant difference was observed in the number and area of occlusal contact points among the four groups. FE analysis showed that the 3D-DCGAN design had the best match to the natural tooth regarding the stress distribution in the crown. The 3D-DCGAN design was subjected to 26.73 MPa and the natural tooth was subjected to 23.97 MPa stress at the central fossa area under physiological occlusal force (300 N); the two groups showed similar fatigue lifetimes (F-N curve) under simulated cyclic loading of 100-400 N. Designs with Biogeneric or technician would yield respectively higher or lower fatigue lifetime than natural teeth. SIGNIFICANCE: This study demonstrated that 3D-DCGAN could be utilised to design personalised dental crowns with high accuracy that can mimic both the morphology and biomechanics of natural teeth.


Asunto(s)
Inteligencia Artificial , Coronas , Diseño de Prótesis Dental , Diseño Asistido por Computadora , Porcelana Dental , Algoritmos , Análisis del Estrés Dental
4.
J Funct Biomater ; 13(4)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36412849

RESUMEN

This review aims to provide a comprehensive analysis of the characterizations of bioactive glass (BAG)-loaded dental resin-based composite materials. Online databases (Web of Science, PubMed, and Science Direct) were used to collect data published from January 2011 to January 2022. Only BAG-containing resin adhesive and resin restorative composites are discussed in this narrative review. BAG-loaded resin composites exhibit excellent mineralization ability reflecting enhanced ion release, pH elevation, and apatite formation, especially regarding high BAG loading. This aids the anti-demineralization and remineralization of teeth. Furthermore, BAG-loaded resin composites demonstrated in vitro biocompatibility and antibacterial performance. It has been suggested that BAG fillers with small particle sizes and no more than 20 wt% in terms of loading amount should be used to guarantee the appropriate mechanical properties of resin composites. However, most of these studies focused on one or some aspects using different resin systems, BAG types, and BAG amounts. As such, this makes the comparison difficult, and it is essential to find an optimal balance between different properties. BAG-loaded resin composites can be regarded as bioactive materials, which present major benefits in dentistry, especially their capability in the bacterial inhibition, cell biocompatibility, anti-demineralization, and remineralization of teeth.

5.
Biomater Investig Dent ; 9(1): 75-83, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081491

RESUMEN

Purpose: Measurement of bacterial adhesion has been of great interest for different dental materials. Various methods have been used for bacterial counting; however, they are all indirect measurements with estimated results and therefore cannot truly reflect the adhesion status. This study provides a new direct measurement approach by using a simple artificial intelligence (AI) method to quantify the initial bacterial adhesion on different dental materials using Scanning Electron Microscope (SEM) images. Materials and Methods: Porphyromonas gingivalis (P.g.) and Fusobacterium nucleatum (F.n.) were used for bacterial adhesion on dental zirconia surfaces, and the adhesion was evaluated using SEM images at time points of one, seven, and 24 h(s). Image pre-processing and bacterial area measurement were performed using Fiji software with a machine learning plugin. The same AI method was also applied on SEM with Streptococcus mutans (S.m.) inoculated PMMA nano-structured surface at 1, 24, 72, and 168 h(s), and then further compared with the CLSM method. Results: For both P.g. and F.n. initiation adhesion on zirconia, a new linear correlation (r2 > 0.98) was found between bacteria adhered area and time, such that: b acteria   adhered   area   ( m m 2 ) ∝ log ⁡ ( time ) For S.m. on PMMA surface, live/dead staining CLSM method and the newly proposed AI method on SEM images were strongly and positively associated (Pearson's correlation coefficient r > 0.9), i.e. both methods are comparable. Conclusions: SEM images can be analyzed directly for both morphology and quantifying bacterial adhesion on different dental materials' surfaces by the simple AI-enabled method with reduced time, cost, and labours.

6.
Membranes (Basel) ; 11(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34564484

RESUMEN

Guided tissue regeneration (GTR) membranes are used for treating chronic periodontal lesions with the aim of regenerating lost periodontal attachment. Spatially designed functionally graded bioactive membranes with surface core layers have been proposed as the next generation of GTR membranes. Composite formulations of biopolymer and bioceramic have the potential to meet these criteria. Chitosan has emerged as a well-known biopolymer for use in tissue engineering applications due to its properties of degradation, cytotoxicity and antimicrobial nature. Hydroxyapatite is an essential component of the mineral phase of bone. This study developed a GTR membrane with an ideal chitosan to hydroxyapatite ratio with adequate molecular weight. Membranes were fabricated using solvent casting with low and medium molecular weights of chitosan. They were rigorously characterised with scanning electron microscopy, Fourier transform infrared spectroscopy in conjunction with photoacoustic sampling accessory (FTIR-PAS), swelling ratio, degradation profile, mechanical tensile testing and cytotoxicity using human osteosarcoma and mesenchymal progenitor cells. Scanning electron microscopy showed two different features with 70% HA at the bottom surface packed tightly together, with high distinction of CH from HA. FTIR showed distinct chitosan dominance on top and hydroxyapatite on the bottom surface. Membranes with medium molecular weight showed higher swelling and longer degradation profile as compared to low molecular weight. Cytotoxicity results indicated that the low molecular weight membrane with 30% chitosan and 70% hydroxyapatite showed higher viability with time. Results suggest that this highly segregated bilayer membrane shows promising potential to be adapted as a surface layer whilst constructing a functionally graded GTR membrane on its own and for other biomedical applications.

7.
J Prosthodont Res ; 65(3): 273-283, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421062

RESUMEN

PURPOSE: Fiber-reinforced composites (FRCs) have received considerable attention, owing to their potential use in dental prostheses or bone fracture fixation applications. The aim of this systematic review was to analyze and report the biological properties of FRCs reported in the existing literature. STUDY SELECTIONS: A systematic search of four databases (PubMed/MEDLINE, Scopus, Web of Science, and Cochrane library) was performed to identify all relevant studies published between 1962 and 2019. The search was limited to laboratory-based studies published in English. Citation mining was also performed through cross-referencing of included studies and hand searching of relevant journals. RESULTS: A total of 1283 potentially relevant articles were initially identified, and thirty-three articles were full-text screened. In the final ten studies included for review, four investigated bacterial adhesion and growth abilities on FRCs, four investigated the fibroblastic cytotoxicity of different surface-treated FRCs, and two investigated the osseointegration between bone and FRCs. Owing to the heterogeneity of fiber types, FRC-coating, and lack of standardized testing protocols, a meta-analysis was not feasible. The included studies indicated that glass fibers, and in particular E-glass fibers, are superior to ceramics and other FRCs in terms of bacterial adherence, fibroblast cytotoxicity, and cell viability. CONCLUSIONS: Glass-fiber-reinforced composites are cytocompatible materials that possess satisfactory biological properties and can be used in dental prosthesis and craniofacial implants. Further research is necessary to regulate the matrix ion release/degradation of FRCs to prolong the initially demonstrated properties.


Asunto(s)
Vidrio
8.
Saudi Dent J ; 33(5): 229-238, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34194185

RESUMEN

OBJECTIVE: This literature research aimed to compare, contrast and quantify the innovations in the most commonly used dental biomaterials. METHODOLOGY: Original research articles based on experimental dental biomaterials published between 2007 and 2019 were retrieved and reviewed. A search of electronic databases, PubMed, Scopus, and Web of Science indexed dental/biomaterials journals, has been conducted. The inclusion criteria in this research were: synthesis of experimental dental materials, whereas commercial dental materials, review articles, and clinical trials (case reports) were excluded. RESULTS: It was found that the amount of publications related to dental subgingival implants, computer-aided modeling ceramics, aesthetic restorative materials, adhesives cements, ceramics, bioceramics, endodontic materials, bioactive scaffolds, stem cells, and guided-tissue membranes had increased significantly from 2007. At the same time, the number of publications related to dental cements, silver amalgam, and dental alloys has decreased. For characterization of dental materials it was noted that mechanical properties were tested mostly for restorative materials. On the other hand, biological properties were most assessed for dental subgingival implants and endodontic materials, however, physical properties predominantly for bioceramics. CONCLUSION: It is concluded that to meet clinical demands there was more focus on restorative materials that provided better aesthetics, including resin composites, adhesive resin composites (luting cements), zirconia, and other ceramics. The boost in laboratory and animal research related to bioceramics was attributed to their regenerative potential. This current literature study will help growing researchers to consider and judge the direction to which research might be guided in order to plan prospective research projects.

9.
Eur J Oral Sci ; 129(4): e12791, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34057757

RESUMEN

The purpose of the study was to measure the cement thickness obtained when ceramic rods were luted to dentin and to analyze the relation between cement thickness and the previously published tensile bond strength of similar test specimens. In addition, the ISO standard 4049:2019 method was used to determine the film thickness of the used cements. Zirconia (n = 100) and lithium disilicate (n = 50) rods were cemented to bovine dentin using one of five different resin-based cements. The ceramic-dentin test specimens were cut into two slices and the cement thickness was measured using a scanning electron microscope and compared to the bond strength values of similar specimens already published. The mean cement thickness recorded for ceramic rods cemented to dentin was in the range 20-40 µm, which was larger than the cement film thickness found by the ISO method. The cement film thickness determined according to ISO standard methods did not concur with the results obtained when cementing ceramic rods to dentin. For cementing ceramic restorations, a cement thickness in the range 25-35 µm seems to be favorable for the bond strength.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , Animales , Bovinos , Cerámica , Porcelana Dental , Dentina , Ensayo de Materiales , Propiedades de Superficie , Resistencia a la Tracción , Circonio
10.
J Int Med Res ; 49(2): 300060520985336, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33615855

RESUMEN

OBJECTIVE: The effects of saliva on demineralized dentin and silver diamine fluoride (SDF) were investigated in vitro. METHODS: Dentin samples stored in deionized water (DIW), buffer solution (BS), basal medium mucin (BMM), and unstimulated whole saliva (UWS) were demineralized for 3 days and immersed in the same storage media. SDF as a 38 mass% solution was applied to the dentin samples for 3 minutes after they had been replaced in their respective medium. Surfaces were analyzed by scanning electron microscopy, energy-dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). RESULTS: Scanning electron microscopy showed various surface deposits and coatings, including occlusion of dentinal tubules. DIW resulted in the thinnest coating, whereas BMM resulted in the thickest. EDX and XPS showed the formation of metallic silver and silver compounds in all four media, with the greatest formation in BS. XRD indicated that the main product was silver chloride except in DIW. Sulphur was found in BMM and UWS. EDX and XPS detected fluoride and XRD detected calcium fluoride and fluorohydroxyapatite in BS, BMM, and UWS. CONCLUSION: The interaction between SDF and demineralized dentin was dependent upon the storage medium. BMM provided an outcome most similar to human saliva.


Asunto(s)
Dentina , Fluoruros Tópicos , Humanos , Compuestos de Amonio Cuaternario , Compuestos de Plata
11.
J Prosthodont ; 30(5): 447-453, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32924224

RESUMEN

PURPOSE: To test the hypothesis that surface roughening and polishing of ceramics have no effect on their surface roughness and biofilm adhesion. MATERIALS AND METHODS: Feldspathic ceramic Vitablocks™ TriLuxe forte (VTF), lithium disilicate glass IPS e.max Press™ (IPS) and zirconia reinforced lithium silicate Vita Suprinity™ (VS) ceramic blocks (n = 27 per group) were prepared from sintered CAD blocks using a water-cooled saw. They were further subdivided into 3 subgroups according to the surface treatment protocols (n = 9): as prepared, roughened and polished. The surface roughness of the ceramic blocks was measured using an electro-mechanical profilometer. The ceramic sections were inoculated with Streptococcus mutans and incubated for 48 hours to form a biofilm. The ceramic surfaces with the biofilms were analyzed using Confocal Laser Scanning Microscopy to calculate the percentage of live bacteria and substratum coverage by the biofilm, and further visualized using scanning electron microscopy. Statistical analysis was done with SPSS software using two-way ANOVA, followed by post hoc Bonferroni test to identify significant differences between the groups. The level of significance was set at p = 0.05. RESULTS: As prepared VTF showed significantly higher mean surface roughness values than as prepared IPS and VS. The mean percentage of live bacteria and biofilm coverage of the substrate were significantly higher in the roughened ceramic blocks than the as prepared and polished blocks for all three ceramic types (p < 0.05). Polished specimens of VS significantly lower percentage of biofilm coverage than the other groups (p < 0.05). CONCLUSIONS: This study sheds new light that adjustments of ceramic restorations prior to cementation increases the likelihood for formation and adhesion of microbial biofilms on the surface. Polished zirconia reinforced lithium disilicate ceramics demonstrated the lowest bacterial adhesion among the evaluated ceramics.


Asunto(s)
Diseño Asistido por Computadora , Porcelana Dental , Biopelículas , Cerámica , Ensayo de Materiales , Polonia , Propiedades de Superficie
12.
Restor Dent Endod ; 45(3): e39, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32839720

RESUMEN

Despite the vast literature on the effects of root canal irrigants on the dentin characteristics, the precise effects of clinically relevant irrigation sequences remain unclear. In this review, we systematically dissect the role of different sequential irrigation approaches that are used in clinical endodontics. Using a systematic search strategy, we attempt to answer the question: 'Which irrigating sequence has the most deleterious effects on dentin structure and properties?' The effect of irrigants on the dentin composition and mechanical properties have been reviewed. A wide variety of concentrations, duration and techniques have been employed to characterize the effects of chemicals on dentin properties, thus making it impossible to draw guidelines or recommendations of irrigant sequences to be followed clinically. It was apparent that all the studied irrigation sequences potentially result in some deleterious effects on dentin such as decrease in the flexural strength, microhardness, modulus of elasticity and inorganic content and organic-inorganic ratio of the dentin. However, the literature still lacks comprehensive investigations to compare the deleterious effect of different irrigation sequences, using a wide variety of qualitative and quantitative methods. Such investigations are essential to make clinical recommendations and strategize efforts to minimize chemically-induced damage to dentin characteristics.

13.
J Biomed Mater Res B Appl Biomater ; 108(1): 56-66, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30920144

RESUMEN

The aim of the current study was to synthesize a fast-setting ion-doped calcium silicate bioceramic by the sol-gel method and to characterize its in vitro apatite-forming ability and cell viability. Calcium silicate (CS), doped calcium silicate with zinc and magnesium, with Ca/Zn molar ratios of 6.7:1 (DCS1), and 4.5:1 (DCS2), were synthesized by the sol-gel method. Matreva white MTA (WMTA, Matreva, CA, Egypt) was used as a control. The synthesized powders were characterized by x-ray diffraction. Setting time was measured using the Gilmore needle indentation technique. The in vitro apatite-forming ability of the materials was evaluated by scanning electron microscope and energy dispersive X-ray. NIH3T3-E1 cells viability was tested using MTT assay. The ion release of Ca, Si, Zn, and Mg was measured using inductive coupled plasma-optical emission spectroscopy (ICP-OES). One-way ANOVA was used to analyze setting time results. The Tukey's HSD post hoc test was used to establish significance (p < 0.001). For nonparametric data, the Kruskal-Wallis H test with Dunn's correction for post hoc comparison was used (p < 0.05). CS, DCS1, and DCS2 showed a significant decrease in setting time 33 ± 1.63 min, 28 ± 1.63 min, and 41.75 ± 2.87 min, respectively, compared to WMTA 91 ± 3.16 min (p < 0.001). DCS1 showed the highest apatite-forming ability and cell viability compared to the other groups. Ca and Si ions release decreased in both DCS1 and DCS2. The physical and biological properties of CS can be successfully improved by the sol-gel synthesis and ions doping. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:56-66, 2020.


Asunto(s)
Compuestos de Calcio , Cerámica , Ensayo de Materiales , Silicatos , Animales , Compuestos de Calcio/química , Compuestos de Calcio/farmacología , Supervivencia Celular/efectos de los fármacos , Cerámica/síntesis química , Cerámica/química , Cerámica/farmacología , Ratones , Células 3T3 NIH , Transición de Fase , Silicatos/química , Silicatos/farmacología
14.
Dent J (Basel) ; 7(3)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374874

RESUMEN

The aim of this in vitro study was to evaluate the adhesion strength of two new fiber post systems (FiberSite™ Post and Cytec™ Blanco Post) cemented with two different adhesive resin cements (Panavia™ SA and Maxcem™ Elite). Root canals of sixty extracted human mandibular premolars were prepared using ProTaper Universal™ rotary files (Dentsply Sirona Endodontics, York, PA, USA). The root canals were irrigated with 5.25% sodium hypochlorite (NaOCl) during instrumentation. After root canal preparation, the canals were irrigated with 2 mL of 17% EDTA (1 min), followed by 2 mL of 5.25% (5 min) NaOCI, and 2 mL saline. The root canals were dried with paper points and divided randomly into two study groups (n = 30) according to the type of post system: Group 1, FiberSite™ Post (MegaDental, Partanna, Italy); and group 2, Cytec™ Blanco Post (Hahnenkratt, Königsbach-Stein, Germany), with one of the two adhesive resin cements: Subgroup A, Panavia™ SA Cement Plus Automix (Kuraray, Osaka, Japan); subgroup B, Maxcem™ Elite (Kerr, Orange, CA, USA). Following thermocycling, the adhesion strength was evaluated using the push-out adhesion (bond) strength test. Fractographic analysis was performed using stereomicroscope. The data were analyzed using two-way analysis of variance (p = 0.05). The adhesion strength values of both the posts were significantly higher when cemented with subgroup B (Maxcem™ Elite). The highest adhesion strength value was demonstrated by group 1B (FiberSite™ post cemented with Maxcem™ Elite cement). The type of post did not have a significant impact on the bond strength values for either cement material.

15.
J Mech Behav Biomed Mater ; 98: 1-10, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31174080

RESUMEN

AIM OF THE STUDY: The aim of this laboratory study was to evaluate the effect of ethanol treatment on the surface roughness (Sa), nano-mechanical properties (NMP) and surface characterization of dental fiber reinforced composite (FRC) with semi-interpenetrating polymer network (IPN). MATERIALS AND METHODS: A total of 240 FRC specimens with bisphenol A-glycidyl methacrylate - triethyleneglycol dimethacrylate - Poly (methylmetahcrylate) (bis-GMA-TEGDMA-PMMA) IPN matrix system were light cured for 40 s and divided into 2 groups (L and LH). The group LH was further post-cured by heat at 95 °C for 25 min. The specimens were exposed to 99.9%, 70% and 40% for 15, 30, 60 and 120 s respectively. The treated specimens were evaluated for Sa using non-contact profilometer. NMP were determined using nanoindentation technique and chemical characterization was assessed by Fourier Transform-Infrared (FTIR) spectroscopic analyses. Scanning electron microscopic (SEM) images were made to evaluate the surface topographical changes. RESULTS: Both the L and LH group showed changes in the Sa and NMP after being treated by different concentrations of ethanol and at different time interval. The highest Sa was observed with L-group (0.733 µm) treated with 99.9% ethanol for 120 s. Specimens in LH-group treated with 99.9% ethanol for 120 s (1.91 GPa) demonstrated increased nano-hardness, and group treated with 40% ethanol for 120 s demonstrated increased Young's modulus of elasticity (22.90 GPa). FTIR analyses revealed changes in the intensity and bandwidth in both the L and LH groups. CONCLUSION: The present study demonstrated that both light-cured and heat post-cured FRC were prone for ethanol induced alteration in the surface roughness (Sa), nano-mechanical properties (NMP) and chemical characterization. The interphase between the glass fibers and the organic matrix was affected by ethanol. The changes were considerably less in magnitude in the heat post-cured FRC specimens.


Asunto(s)
Etanol/química , Vidrio/química , Fenómenos Mecánicos , Polímeros/química , Propiedades de Superficie
16.
Dent Mater J ; 37(6): 940-949, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30135338

RESUMEN

The aim of this laboratory study was to evaluate the monomer leaching and degree of conversion (DC) from experimental bioactive resin composites (RBCs) and to do comparison with commercial bulkfill and packable resin composites. Experimental dimethacrylatebased resin composites were reinforced with silanated nano-hydroxyapatite (30 and 45 wt%). The ion leaching and DC of these resin composites were compared and contrasted with SDR™ and Filtek P60™ by using the high performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR), respectively. A significant difference was found in elution of monomer between the resin composites. SDR™ showed significantly high monomer elution and structural changes compared to other resin composites. The DC of bioactive RBCs showed the highest conversion rate after polymerization. Resin composite with nano-hydroxyapatite with the presence of a bioactive component might provide biomimetic approach for the material. Moreover, a low concentration of nanohydroxyapatite nano-fillers have shown better properties than micro-fillers based resin composites.


Asunto(s)
Cerámica/química , Resinas Compuestas/química , Hidroxiapatitas/química , Metacrilatos/química , Cromatografía Líquida de Alta Presión , Resinas Compuestas/síntesis química , Ensayo de Materiales , Nanoestructuras/química , Silanos/química , Espectroscopía Infrarroja por Transformada de Fourier
17.
J Lasers Med Sci ; 9(2): 87-91, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30026892

RESUMEN

Introduction: Zirconia bioceramic can be considered for metallic replacement in dental implant applications. A proper method of surface modification may promote better osseointegration. Methods: In study evaluated viability of fibroblast cell following surface treatment. Therefore, viability L929 cells were characterized using MTT assay and scanning electron microscopy. Results: The viability assessment determined significant differences A-Y-TZP20 without surface treatment as compared to laser surface treatment (B), laser surface treatment + hydroxyapatiteyttrium stabilized tetragonal zirconia nanocomposite coat (C) and control. This study demonstrated that L929 cells approximately proliferated and spread on A-Y-TZP20 nanocomposite disk in laser surface treatment(B), Laser surface treatment + hydroxiapatite-yttrium stabilized tetragonal zirconia nanocomposite coat (C) groups similar to control group. Conclusion: Laser surface treatment showed positive effect on the viability of L929 cells.

18.
J Prosthodont Res ; 62(4): 436-442, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29731271

RESUMEN

PURPOSE: The aim of this study was to investigate and quantify the effect of preparation design parameters on a premolar restored with two different CAD/CAM ceramic crowns by three-dimensional finite element analysis (FEA). METHODS: A restored human first premolar was digitized by a micro-CT scanner and a 3D model was created by a medical image processing software (Mimics). Following segmentation, dentine and ceramic were extracted by a surface meshing software (3-matic). Models with different preparation designs with three convergence angles (6°, 12° and 20°) and two preparation heights (3.1mm and 4.1mm) were produced. Mesh generation for models was performed in IA-FEMesh software with a lithium disilicate glass ceramic (LD, E=95.9GPa) and a polymer-infiltrated ceramic (PIC, E=30.1GPa) as the restorative materials. A 5-mm diameter stainless steel hemisphere was employed as an indenter. Twelve models were analyzed numerically in Abaqus™. RESULTS: The results indicated that preparation height was found to be a major factor affecting stress distribution in different components. In all models, the maximum principal stress of the ceramic crowns was found in contact area against the indenter. This stress was lesser in the longer abutment than the shorter one and it was greater for LD ceramic. Convergence angle had limited effect on stress distribution of ceramic crown in all models. CONCLUSIONS: The preparation height appeared to play a more important role in the stress distribution of ceramic crown than the convergence angle.


Asunto(s)
Diente Premolar , Cerámica , Coronas , Materiales Dentales , Restauración Dental Permanente , Análisis de Elementos Finitos , Maxilar , Preparación Protodóncica del Diente/métodos , Diseño Asistido por Computadora , Humanos , Imagenología Tridimensional , Estrés Mecánico , Tomografía Computarizada por Rayos X/métodos
19.
Dent Mater ; 34(7): e149-e157, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29653725

RESUMEN

OBJECTIVES: The purpose of this study was to estimate the fatigue life of premolars restored with two dental ceramics, lithium disilicate (LD) and polymer infiltrated ceramic (PIC) using the numerical method and compare it with the published in vitro data. METHODS: A premolar restored with full-coverage crown was digitized. The volumetric shape of tooth tissues and crowns were created in Mimics®. They were transferred to IA-FEMesh for mesh generation and the model was analyzed with Abaqus. By combining the stress distribution results with fatigue stress-life (S-N) approach, the lifetime of restored premolars was predicted. RESULTS: The predicted lifetime was 1,231,318 cycles for LD with fatigue load of 1400N, while the one for PIC was 475,063 cycles with the load of 870N. The peak value of maximum principal stress occurred at the contact area (LD: 172MPa and PIC: 96MPa) and central fossa (LD: 100MPa and PIC: 64MPa) for both ceramics which were the most seen failure areas in the experiment. In the adhesive layer, the maximum shear stress was observed at the shoulder area (LD: 53.6MPa and PIC: 29MPa). SIGNIFICANCE: The fatigue life and failure modes of all-ceramic crown determined by the numerical method seem to correlate well with the previous experimental study.


Asunto(s)
Cerámica/química , Coronas , Materiales Dentales/química , Porcelana Dental/química , Fracaso de la Restauración Dental , Diente Premolar , Diseño Asistido por Computadora , Análisis del Estrés Dental , Humanos , Técnicas In Vitro , Ensayo de Materiales , Estrés Mecánico
20.
Odontology ; 106(2): 215-222, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29243185

RESUMEN

The purpose of this study was to compare the fracture resistance, mode of fracture, and stress distribution of endodontically treated teeth prepared with three different fiber post lengths and two different abutment heights, using both experimental and finite element (FE) approaches. Forty-eight human maxillary premolars with two roots were selected and endodontically treated. The teeth were randomly distributed into six equally sized groups (n = 8) with different combinations of post lengths (7.5, 11, and 15 mm) and abutment heights (3 and 5 mm). All the teeth restored with glass fiber post (Rely X Fiber Post, 3M ESPE, USA) and a full zirconia crown. All the specimens were thermocycled and then loaded to failure at an oblique angle of 135°. Statistical analysis was performed for the effects of post length and abutment height on failure loads using ANOVA and Tukey's honestly significant difference test. In addition, corresponding FE models of a premolar restored with a glass fiber post were developed to examine mechanical responses. The factor of post length (P < 0.01) had a significant effect on failure load. The abutment height (P > 0.05) did not have a significant effect on failure load. The highest mean fracture resistance was recorded for the 15 mm post length and 5 mm abutment height test group, which was significantly more resistant to fracture than the 7.5 mm post and 5 mm abutment height group (P < 0.05). The FE analysis showed the peak compression and tension stress values of 7.5 mm post length were higher than that of 11 and 15 mm post length. The stress value of remaining tooth decreased as the post length was increased. Within the limitations of this experimental and FE analysis study, increasing the post length inside the root of endodontically treated premolar teeth restored with glass-fiber posts increase the fracture resistance to non-axial forces. Failure mode is more favorable with reduced abutment heights.


Asunto(s)
Coronas , Pilares Dentales , Fracaso de la Restauración Dental , Técnica de Perno Muñón , Diente no Vital , Diente Premolar , Materiales Dentales , Análisis del Estrés Dental , Análisis de Elementos Finitos , Humanos , Técnicas In Vitro , Distribución Aleatoria , Cementos de Resina , Resultado del Tratamiento , Circonio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...