Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(9): 6693-6706, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36807663

RESUMEN

The role of the oxidation state of cerium cations in a thin oxide film in the adsorption, geometry, and thermal stability of glycine molecules was studied. The experimental study was performed for a submonolayer molecular coverage deposited in vacuum on CeO2(111)/Cu(111) and Ce2O3(111)/Cu(111) films by photoelectron and soft X-ray absorption spectroscopies and supported by ab initio calculations for prediction of the adsorbate geometries, C 1s and N 1s core binding energies of glycine, and some possible products of the thermal decomposition. The molecules adsorbed on the oxide surfaces at 25 °C in the anionic form via the carboxylate oxygen atoms bound to cerium cations. A third bonding point through the amino group was observed for the glycine adlayers on CeO2. In the course of stepwise annealing of the molecular adlayers on CeO2 and Ce2O3, the surface chemistry and decomposition products were analyzed and found to relate to different reactivities of glycinate on Ce4+ and Ce3+ cations, observed as two dissociation channels via C-N and C-C bond scission, respectively. The oxidation state of cerium cations in the oxide was shown to be an important factor, which defines the properties, electronic structure, and thermal stability of the molecular adlayer.

2.
ACS Appl Mater Interfaces ; 13(29): 35187-35196, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34254775

RESUMEN

Achieving thermoelectric devices with high performance based on low-cost and nontoxic materials is extremely challenging. Moreover, as we move toward an Internet-of-Things society, a miniaturized local power source such as a thermoelectric generator (TEG) is desired to power increasing numbers of wireless sensors. Therefore, in this work, an all-oxide p-n junction TEG composed of low-cost, abundant, and nontoxic materials, such as n-type ZnO and p-type SnOx thin films, deposited on borosilicate glass substrate is proposed. A type II heterojunction between SnOx and ZnO films was predicted by density functional theory (DFT) calculations and confirmed experimentally by X-ray photoelectron spectroscopy (XPS). Moreover, scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray spectroscopy (EDS) show a sharp interface between the SnOx and ZnO layers, confirming the high quality of the p-n junction even after annealing at 523 K. ZnO and SnOx thin films exhibit Seebeck coefficients (α) of ∼121 and ∼258 µV/K, respectively, at 298 K, resulting in power factors (PF) of 180 µW/m K2 (for ZnO) and 37 µW/m K2 (for SnOx). Moreover, the thermal conductivities of ZnO and SnOx films are 8.7 and 1.24 W/m K, respectively, at 298 K, with no significant changes until 575 K. The four pairs all-oxide TEG generated a maximum power output (Pout) of 1.8 nW (≈126 µW/cm2) at a temperature difference of 160 K. The output voltage (Vout) and output current (Iout) at the maximum power output of the TEG are 124 mV and 0.0146 µA, respectively. This work paves the way for achieving a high-performance TEG device based on oxide thin films.

3.
Front Microbiol ; 12: 659614, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276595

RESUMEN

The aim of this study was to compare the antibacterial mode of action of silver ions (Ag+) and selected silver nanoformulations against E. coli strains (E. coli J53, Escherichia coli BW25113 and its derivatives: Δ ompA, Δ ompC, Δ ompF, Δ ompR, ompRG596AcusSG1130A, cusSG1130A). In this research we used various experimental methods and techniques such as determination of the minimal inhibitory concentration, flow cytometry, scanning electron microscopy, circular dichroism as well as computational methods of theoretical chemistry. Thanks to the processing of bacteria and silver samples (ions and nanoformulations), we were able to determine the bacterial sensitivity to silver samples, detect reactive oxygen species (ROS) in the bacterial cells, visualize the interaction of silver samples with the bacterial cells, and identify their interactions with proteins. Differences between the mode of action of silver ions and nanoformulations and the action of nanoformulations themselves were revealed. Based on the results of computational methods, we proposed an explanation of the differences in silver-outer protein interaction between silver ions and metallic silver; in general, the Ag0 complexes exhibit weaker interaction than Ag+ ones. Moreover, we identified two gutter-like areas of the inner layer of the ion channel: one more effective, with oxygen-rich side chains; and another one less effective, with nitrogen-rich side chains.

4.
J Phys Chem Lett ; 11(19): 8365-8371, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909431

RESUMEN

Oxide supports can modify and stabilize platinum nanoparticles (NPs) in electrocatalytic materials. We studied related phenomena on model systems consisting of Pt NPs on atomically defined Co3O4(111) thin films. Chemical states and dissolution behavior of model catalysts were investigated as a function of the particle size and the electrochemical potential by ex situ emersion synchrotron radiation photoelectron spectroscopy and by online inductively coupled plasma mass spectrometry. Electronic metal-support interaction (EMSI) yields partially oxidized Ptδ+ species at the metal/support interface of metallic nanometer-sized Pt NPs. In contrast, subnanometer particles form Ptδ+ aggregates that are exclusively accompanied by subsurface Pt4+ species. Dissolution of Cox+ ions is strongly coupled to the presence of Ptδ+ and the reduction of subsurface Pt4+ species. Our findings suggest that EMSI directly affects the integrity of oxide-based electrocatalysts and may be employed to stabilize Pt NPs against sintering and dissolution.

5.
RSC Adv ; 10(65): 39373-39384, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-35515371

RESUMEN

One of the biggest challenges for the biomedical applications of cerium oxide nanoparticles (CeNPs) is to maintain their colloidal stability and catalytic activity as enzyme mimetics after nanoparticles enter the human cellular environment. This work examines the influences of CeNP surface properties on their colloidal stability and catalytic activity in cell culture media (CCM). Near-spherical CeNPs stabilized via different hydrophilic polymers were prepared through a wet-chemical precipitation method. CeNPs were stabilized via either electrostatic forces, steric forces, or a combination of both, generated by surface functionalization. CeNPs with electrostatic stabilization adsorb more proteins compared to CeNPs with only steric stabilization. The protein coverage further improves CeNPs colloidal stability in CCM. CeNPs with steric polymer stabilizations exhibited better resistance against agglomeration caused by the high ionic strength in CCM. These results suggest a strong correlation between CeNPs intrinsic surface properties and the extrinsic influences of the environment. The most stabilized sample in CCM is poly(acrylic acid) coated CeNPs (PAA-CeNPs), with a combination of both electrostatic and steric forces on the surface. It shows a hydrodynamic diameter of 15 nm while preserving 90% of its antioxidant activity in CCM. PAA-CeNPs are non-toxic to the osteoblastic cell line SAOS-2 and exhibit promising potential as a therapeutic alternative.

6.
ACS Appl Mater Interfaces ; 12(4): 4454-4462, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31869200

RESUMEN

Platinum is the most widely used and best performing sole element for catalyzing the oxygen reduction reaction (ORR) in low-temperature fuel cells. Although recyclable, there is a need to reduce the amount used in current fuel cells for their extensive uptake in society. Alloying platinum with rare-earth elements such as yttrium can provide an increase in activity of more than seven times, reducing the amount of platinum and the total amount of catalyst material required for the ORR. As yttrium is easily oxidized, exposure of the Pt-Y catalyst layer to air causes the formation of an oxide layer that can be removed during acid treatment, leaving behind a highly active pure platinum overlayer. This paper presents an investigation of the overlayer composition and quality of Pt3Y films sputtered from an alloy target. The Pt3Y catalyst surface is investigated using synchrotron radiation X-ray photoelectron spectroscopy before and after acid treatment. A new substoichiometric oxide component is identified. The oxide layer extends into the alloy surface, and although it is not completely removed with acid treatment, the catalyst still achieves the expected high ORR activity. Other surface-sensitive techniques show that the sputtered films are smooth and bulk X-ray diffraction reveals many defects and high microstrain. Nevertheless, sputtered Pt3Y exhibits a very high activity regardless of the film's oxide content and imperfections, highlighting Pt3Y as a promising catalyst. The obtained results will help to support its integration into fuel cell systems.

7.
Sensors (Basel) ; 19(21)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683653

RESUMEN

The most promising and utilized chemical sensing materials, WO3 and SnO2 were characterized by means advanced synchrotron based XPS, UPS, NAP-XPS techniques. The complementary electrical resistance and sensor testing experiments were also completed. A comparison and evaluation of some of the prominent and newly employed spectroscopic characterization techniques for chemical sensors were provided. The chemical nature and oxidation state of the WO3 and SnO2 thin films were explored at different depths from imminent surface to a maximum of 1.5 nm depth from the surface with non-destructive depth profiling. The adsorption and amount of chemisorbed oxygen species were precisely analyzed and quantified as a function of temperature between 25-400 °C under realistic operating conditions for chemical sensors employing 1-5 mbar pressures of oxygen (O2) and carbon monoxide (CO). The effect of realistic CO and O2 gas pressures on adsorbed water (H2O), OH- groups and chemisorbed oxygen species ( O 2 ( a d s ) - ,   O ( a d s ) ,   - O 2 ( a d s ) 2 - ) and chemical stability of metal oxide surfaces were evaluated and quantified.

8.
J Chem Phys ; 151(20): 204703, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779319

RESUMEN

Iridium-based materials are among the most active bifunctional catalysts in heterogeneous catalysis and electrocatalysis. We have investigated the properties of atomically defined Ir/CeO2(111) model systems supported on Cu(111) and Ru(0001) by means of synchrotron radiation photoelectron spectroscopy, resonant photoemission spectroscopy, near ambient pressure X-ray photoelectron spectroscopy (NAP XPS), scanning tunneling microscopy, and temperature programmed desorption. Electronic metal-support interactions in the Ir/CeO2(111) system are accompanied by charge transfer and partial reduction of CeO2(111). The magnitude of the charge transfer depends strongly on the Ir coverage. The Ir/CeO2(111) system is stable against sintering upon annealing to 600 K in ultrahigh vacuum (UHV). Annealing of Ir/CeO2(111) in UHV triggers the reverse oxygen spillover above 450 K. The interaction of hydrogen with Ir/CeO2(111) involves hydrogen spillover and reversible spillover between 100 and 400 K accompanied by the formation of water above 190 K. Formation of water coupled with the strong reduction of CeO2(111) represents the dominant reaction channel upon annealing in H2 above 450 K. The interaction of Ir/CeO2(111) with oxygen has been investigated at moderate and NAP conditions. Additionally, the formation and stability of iridium oxide prepared by deposition of Ir in oxygen atmosphere was investigated upon annealing in UHV and under exposure to H2. The oxidation of Ir nanoparticles under NAP conditions yields stable IrOx nanoparticles. The stability of Ir and IrOx nanoparticles under oxidizing conditions is hampered, however, by encapsulation by cerium oxide above 450 K and additionally by copper and ruthenium oxides under NAP conditions.

9.
J Phys Chem Lett ; 10(20): 6129-6136, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31553619

RESUMEN

Quantitative assessment of the charge transfer phenomena in cobalt oxides and cobalt complexes is essential for the design of advanced catalytic materials. We propose a method for the evaluation of the oxidation state of cobalt oxides with mixed valence states using resonant photoemission spectroscopy. The method is based on the calculation of the resonant enhancement ratio (RER) from the heights of the resonant features associated with the Co3+ and Co2+ states. The nature of the corresponding states was corroborated by means of density functional calculations. We employed a well-ordered Co3O4(111) film to calibrate the RER with respect to the atomic Co3+/Co2+ ratio. The method was applied to monitor the reduction of a well-ordered Co3O4(111) film to CoO(111) upon annealing under exposure to isopropanol. We demonstrate that this method yields the stoichiometry of cobalt oxides at a level of accuracy that cannot be achieved when fitting the Co 2p core level spectra.

10.
Chemistry ; 25(24): 6233-6245, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30839138

RESUMEN

A feasible sonochemical approach is described for the preparation of copper/iron-modified graphene oxide nanocomposites through ultrasonication (20 kHz, 18 W cm-2 ) of an aqueous solution containing copper and iron ion precursors. Unique copper-, copper/iron- and iron-modified graphene oxide nanocomposites have a submicron size that is smaller than that of pristine GO and a higher surface area enriched with Cu2 O, CuO, and Fe2 O3 of multiform phases (α-, ß-, ϵ-, or γ), FeO(OH), and sulfur- or carbon-containing compounds. These nanocomposites are sonochemically intercalated with the nonsteroidal anti-inflammatory drug ketorolac, which results in the formation of nanoscale carriers. Ketorolac monotonically disintegrates from these nanoscale carriers in aqueous solution upon adjustment of the pH from 1 to 8. The disintegration of ketorolac proceeds at a slower rate from the copper/iron-modified graphene oxide at increased pH, but at a faster rate from the iron-modified graphene oxide under acidic conditions.

11.
ChemSusChem ; 11(20): 3640-3648, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30129991

RESUMEN

Electrical characterisation of perovskite solar cells consisting of room-temperature atomic-layer-deposited aluminium oxide (RT-ALD-Al2 O3 ) film on top of a methyl ammonium lead triiodide (CH3 NH3 PbI3 ) absorber showed excellent stability of the power conversion efficiency (PCE) over a long time. Under the same environmental conditions (for 355 d), the average PCE of solar cells without the ALD layer decreased from 13.6 to 9.6 %, whereas that of solar cells containing 9 ALD cycles of depositing RT-ALD-Al2 O3 on top of CH3 NH3 PbI3 increased from 9.4 to 10.8 %. Spectromicroscopic investigations of the ALD/perovskite interface revealed that the maximum PCE with the ALD layer is obtained when the so-called perovskite cleaning process induced by ALD precursors is complete. The PCE enhancement over time is probably related to a self-healing process induced by the RT-ALD-Al2 O3 film. This work may provide a new direction for further improving the long-term stability and performance of perovskite solar cells.

12.
Nat Mater ; 17(7): 592-598, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29867166

RESUMEN

Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1-3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.

13.
J Phys Chem Lett ; 9(11): 2763-2769, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29741895

RESUMEN

Understanding the correlation between structure and reactivity of oxide surfaces is vital for the rational design of catalytic materials. In this work, we demonstrate the exceptional degree of structure sensitivity of the water dissociation reaction for one of the most important materials in catalysis and electrocatalysis. We studied H2O on two atomically defined cobalt oxide surfaces, CoO(100) and Co3O4(111). Both surfaces are terminated by O2- and Co2+ in different coordination. By infrared reflection absorption spectroscopy and synchrotron radiation photoelectron spectroscopy we show that H2O adsorbs molecularly on CoO(100), while it dissociates and forms very strongly bound OH and partially dissociated (H2O) n(OH) m clusters on Co3O4(111). We rationalize this structure dependence by the coordination number of surface Co2+. Our results show that specific well-ordered cobalt oxide surfaces interact very strongly with H2O whereas others do not. We propose that this structure dependence plays a key role in catalysis with cobalt oxide nanomaterials.

14.
J Am Chem Soc ; 140(24): 7681-7687, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29804460

RESUMEN

The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH4 → CH3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy and density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. These findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.

15.
Ultramicroscopy ; 187: 64-70, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29413414

RESUMEN

A platinum catalyst undergoes complex deterioration process during its operation as a cathode in a proton exchange membrane fuel cell. By using in situ electrochemical atomic force microscopy (EC-AFM) with super-sharp probes, we quantitatively describe the roughening of platinum thin films during electrochemical cycling to different upper potentials, which simulate critical operation regimes of the proton exchange membrane fuel cell. The comprehensive quantitative analysis of morphology changes obtained using common roughness descriptors such as the root mean square roughness, the correlation length and the roughness exponent is correlated with cyclic voltammetry performed simultaneously.

16.
Phys Chem Chem Phys ; 20(7): 4688-4698, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29372205

RESUMEN

A model study of adenine adsorption on the Au(111) surface is reported for molecular adlayers prepared by evaporation in vacuum and deposition from saturated aqueous solution. The electronic structure and adsorption geometry of the molecular films were studied experimentally by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy. Adsorption models are proposed for the adlayers arising from the different preparation methods. Density functional theory calculations were used to examine both parallel and upright adenine adsorption geometries, supply additional information on the bond strength, and identify which atom is involved in bonding to Au(111). In the case of deposition in vacuum, the adenine molecule is bound via van der Waals forces to Au(111) with the molecular plane parallel to the surface, consistent with the published scanning tunneling microscopy data on this system. The most stable parallel adenine configuration was found to have an adsorption energy of ca. -1.1 eV using the optB86b-vdW functional. For adenine deposition from aqueous solution, the adlayer is disordered, with molecules in an upright geometry, and with an adsorption energy of ca. -1.0 eV, coordinated via the imino N3 nitrogen atom. The present study contributes to the substantial literature of model studies of adenine on Au(111), complementing the existing knowledge with information on electronic structure, bonding geometry and adsorption energy of this system.

17.
RSC Adv ; 8(61): 35073-35082, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35547049

RESUMEN

Anodization of titanium film sputtered on fluorine doped tin oxide (FTO) glass was performed to obtain highly ordered ∼2 µm long and ∼60 nm wide TiO2 nanotubes. The titania films were annealed in ammonia atmosphere to enable the doping with N. The annealing did not affect the nanotubular morphology and the porosity remained open which is a very important requirement for further deposition of CdS quantum dots. The analysis done by transmission electron microscopy (TEM) has shown that the N-doped nanotubes have a smaller interplanar distance as compared to the undoped ones, whose interplanar distance corresponded to anatase phase. This difference was attributed to the N doping and the Sn migration from the substrate, as demonstrated by energy dispersive spectroscopy (EDS) combined with electron energy loss spectroscopy (EELS). The near edge X-ray absorption fine structure (NEXAFS) analysis clearly demonstrated that also the doped TiO2 film has anatase phase. Regarding the chemical composition of the studied samples, the X-ray photoelectron spectroscopy (XPS) and synchrotron radiation photoelectron spectroscopy (SRPES) analyses have shown that N is incorporated both interstitially and substitutionally in the TiO2 lattice, with a decreased contribution of the interstitial after ionic sputtering. The shift of the valence band maximum (VBM) position for the doped TiO2 vs. the undoped TiO2 proved the narrowing of the band gap. The CdS/TiO2 films show bigger VBM shifting that can be attributed to CdS deposit. Comparing the absorption spectra of the bare undoped and doped TiO2 samples, it was noticed that the doping causes a red shift from 397 to 465 nm. Furthermore, the CdS deposition additionally enhances the absorption in the visible range (575 nm for undoped TiO2/CdS and 560 nm for doped TiO2/CdS films).

18.
Angew Chem Int Ed Engl ; 56(42): 13041-13046, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28815842

RESUMEN

Studies with a series of metal/ceria(111) (metal=Co, Ni, Cu; ceria=CeO2 ) surfaces indicate that metal-oxide interactions can play a very important role for the activation of methane and its reforming with CO2 at relatively low temperatures (600-700 K). Among the systems examined, Co/CeO2 (111) exhibits the best performance and Cu/CeO2 (111) has negligible activity. Experiments using ambient pressure X-ray photoelectron spectroscopy indicate that methane dissociates on Co/CeO2 (111) at temperatures as low as 300 K-generating CHx and COx species on the catalyst surface. The results of density functional calculations show a reduction in the methane activation barrier from 1.07 eV on Co(0001) to 0.87 eV on Co2+ /CeO2 (111), and to only 0.05 eV on Co0 /CeO2-x (111). At 700 K, under methane dry reforming conditions, CO2 dissociates on the oxide surface and a catalytic cycle is established without coke deposition. A significant part of the CHx formed on the Co0 /CeO2-x (111) catalyst recombines to yield ethane or ethylene.

19.
Ultramicroscopy ; 183: 84-88, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28522241

RESUMEN

Proper consideration of length-scales is critical for elucidating active sites/phases in heterogeneous catalysis, revealing chemical function of surfaces and identifying fundamental steps of chemical reactions. Using the example of ceria thin films deposited on the Cu(111) surface, we demonstrate the benefits of multi length-scale experimental framework for understanding chemical conversion. Specifically, exploiting the tunable sampling and spatial resolution of photoemission electron microscopy, we reveal crystal defect mediated structures of inhomogeneous copper-ceria mixed phase that grow during preparation of ceria/Cu(111) model systems. The density of the microsized structures is such that they are relevant to the chemistry, but unlikely to be found during investigation at the nanoscale or with atomic level investigations. Our findings highlight the importance of accessing micro-scale when considering chemical pathways over heteroepitaxially grown model systems.

20.
ACS Nano ; 11(1): 1041-1053, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28029767

RESUMEN

The adsorption of CO on Pt nanoclusters grown in a regular array on a template provided by the graphene/Ir(111) Moiré was investigated by means of infrared-visible sum frequency generation vibronic spectroscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy from ultrahigh vacuum to near-ambient pressure, and ab initio simulations. Both terminally and bridge bonded CO species populate nonequivalent sites of the clusters, spanning from first to second-layer terraces to borders and edges, depending on the particle size and morphology and on the adsorption conditions. By combining experimental information and the results of the simulations, we observe a significant restructuring of the clusters. Additionally, above room temperature and at 0.1 mbar, Pt clusters catalyze the spillover of CO to the underlying graphene/Ir(111) interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...