Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Intervalo de año de publicación
1.
Database (Oxford) ; 20232023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37599593

RESUMEN

Polyglutamine (polyQ) diseases are neurodegenerative disorders caused by abnormally expanded Cytosine, Adenine, Guanine (CAG) triplet repeat sequences in the coding region of otherwise unrelated genes. Until now, nine different polyQ diseases have been described: Huntington's disease, dentatorubral-pallidoluysian atrophy, spinal and bulbar muscular atrophy and six types of spinocerebellar ataxias-1, 2, 3, 6, 7 and 17. The pathogenic expansion translates into an aberrant tract of glutamines in the encoded proteins, compromising several cellular functions and biological processes. There is currently no cure available for the progressive neurodegenerative disorders caused by the ensuing cytotoxic alterations. Although each disease is considered rare, polyQ diseases constitute the largest group of monogenic neurodegenerative disorders. Information about these disorders is scattered among several books, articles and general databases, hindering exploration by students and researchers, but also by patients and their families. Therefore, we aimed to develop a free online database to fill this gap, by centralizing relevant available information. The PolyQ Database is a platform that focuses on all nine polyQ diseases and offers information about topics that are pertinent for scientists, clinicians and the general public, including epidemiology, the characteristics of the causative genes and the codified proteins, the pathophysiology of the diseases and the main clinical manifestations. The database is available at https://polyq.pt/, and it is the first of its kind, focusing exclusively on this group of rare diseases. The database was conceived to be continuously updated and allow incorporation and dissemination of the latest information on polyQ diseases.


Asunto(s)
Atrofias Olivopontocerebelosas , Péptidos , Humanos , Péptidos/genética , Citosina , Bases de Datos Factuales
2.
Brain ; 146(6): 2346-2363, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511898

RESUMEN

Polyglutamine diseases are a group of neurodegenerative disorders caused by an abnormal expansion of CAG repeat tracts in the codifying regions of nine, otherwise unrelated, genes. While the protein products of these genes are suggested to play diverse cellular roles, the pathogenic mutant proteins bearing an expanded polyglutamine sequence share a tendency to self-assemble, aggregate and engage in abnormal molecular interactions. Understanding the shared paths that link polyglutamine protein expansion to the nervous system dysfunction and the degeneration that takes place in these disorders is instrumental to the identification of targets for therapeutic intervention. Among polyglutamine diseases, spinocerebellar ataxias (SCAs) share many common aspects, including the fact that they involve dysfunction of the cerebellum, resulting in ataxia. Our work aimed at exploring a putative new therapeutic target for the two forms of SCA with higher worldwide prevalence, SCA type 2 (SCA2) and type 3 (SCA3), which are caused by expanded forms of ataxin-2 (ATXN2) and ataxin-3 (ATXN3), respectively. The pathophysiology of polyglutamine diseases has been described to involve an inability to properly respond to cell stress. We evaluated the ability of GTPase-activating protein-binding protein 1 (G3BP1), an RNA-binding protein involved in RNA metabolism regulation and stress responses, to counteract SCA2 and SCA3 pathology, using both in vitro and in vivo disease models. Our results indicate that G3BP1 overexpression in cell models leads to a reduction of ATXN2 and ATXN3 aggregation, associated with a decrease in protein expression. This protective effect of G3BP1 against polyglutamine protein aggregation was reinforced by the fact that silencing G3bp1 in the mouse brain increases human expanded ATXN2 and ATXN3 aggregation. Moreover, a decrease of G3BP1 levels was detected in cells derived from patients with SCA2 and SCA3, suggesting that G3BP1 function is compromised in the context of these diseases. In lentiviral mouse models of SCA2 and SCA3, G3BP1 overexpression not only decreased protein aggregation but also contributed to the preservation of neuronal cells. Finally, in an SCA3 transgenic mouse model with a severe ataxic phenotype, G3BP1 lentiviral delivery to the cerebellum led to amelioration of several motor behavioural deficits. Overall, our results indicate that a decrease in G3BP1 levels may be a contributing factor to SCA2 and SCA3 pathophysiology, and that administration of this protein through viral vector-mediated delivery may constitute a putative approach to therapy for these diseases, and possibly other polyglutamine disorders.


Asunto(s)
Enfermedad de Machado-Joseph , Ataxias Espinocerebelosas , Humanos , Ratones , Animales , ADN Helicasas/metabolismo , Proteínas de Choque Térmico , Agregado de Proteínas , Gránulos de Estrés , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ataxina-3/genética , Ratones Transgénicos , Enfermedad de Machado-Joseph/genética
3.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36233198

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is a rare autosomal, dominantly inherited disease, in which the affected individuals have a disease onset around their third life decade. The molecular mechanisms underlying SCA2 are not yet completely understood, for which we hypothesize that aging plays a role in SCA2 molecular pathogenesis. In this study, we performed a striatal injection of mutant ataxin-2 mediated by lentiviral vectors, in young and aged animals. Twelve weeks post-injection, we analyzed the striatum for SCA2 neuropathological features and specific aging hallmarks. Our results show that aged animals had a higher number of mutant ataxin-2 aggregates and more neuronal marker loss, compared to young animals. Apoptosis markers, cleaved caspase-3, and cresyl violet staining also indicated increased neuronal death in the aged animal group. Additionally, mRNA levels of microtubule-associated protein 1 light-chain 3B (LC3) and sequestosome-1 (SQSTM1/p62) were altered in the aged animal group, suggesting autophagic pathway dysfunction. This work provides evidence that aged animals injected with expanded ataxin-2 had aggravated SCA2 disease phenotype, suggesting that aging plays an important role in SCA2 disease onset and disease progression.


Asunto(s)
Ataxina-2 , Ataxias Espinocerebelosas , Animales , Ataxina-2/genética , Ataxina-2/metabolismo , Ataxina-3/genética , Caspasa 3/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Mensajero , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Ataxias Espinocerebelosas/patología
4.
Sci Rep ; 12(1): 4830, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318404

RESUMEN

Queens of Atta sexdens Forel (Hymenoptera: Formicidae) face biotic and abiotic environmental factors in the environment while establishing their nests. Biotic factors such as predation, microbial pathogens, successful symbiotic fungus regurgitation, excavation effort and abiotic factors such as radiant sunlight, temperature, density, and soil moisture exert selection pressures on ant queens. Biotic factors such as temperature and solar irradiation affect the survival of the initial colony differently, in different environments in the field. Queens of the leaf-cutting ant A. sexdens, were installed in sunny and shaded conditions to test this hypothesis. Two hundred A. sexdens queens were collected and individualized in two experimental areas (sunny and shaded), each in an experimental area (25 m2) in the center of a square (50 × 50 cm). Temperature, irradiance, nest depth, rainfall and queen mortality were evaluated. Atta sexdens colony development was better in the shaded environment, and the depth and volume of the initial chamber, fungus garden biomass and number of eggs, larvae, pupae and workers were greater. The queen masses were similar in both environments but mortality was higher in the sunny environment. The worse parameter values for A. sexdens nests in the sunny environment are due to the greater solar irradiance, increasing the variation range of the internal temperature of the initial chamber of the nest. On the other hand, the more stable internal temperature of this chamber in the shaded environment, is due to the lower incidence of solar irradiance, which is also more advantageous for queen survival and the formation and development of A. sexdens colonies. Shaded environments are a better micro habitat for nesting A. sexdens than sunny ones.


Asunto(s)
Hormigas , Animales , Hormigas/microbiología , Ecosistema , Hongos , Humanos , Suelo , Simbiosis
5.
Cell Death Dis ; 12(12): 1117, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845184

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is an incurable and genetic neurodegenerative disorder. The disease is characterized by progressive degeneration of several brain regions, resulting in severe motor and non-motor clinical manifestations. The mutation causing SCA2 disease is an abnormal expansion of CAG trinucleotide repeats in the ATXN2 gene, leading to a toxic expanded polyglutamine segment in the translated ataxin-2 protein. While the genetic cause is well established, the exact mechanisms behind neuronal death induced by mutant ataxin-2 are not yet completely understood. Thus, the goal of this study is to investigate the role of autophagy in SCA2 pathogenesis and investigate its suitability as a target for therapeutic intervention. For that, we developed and characterized a new striatal lentiviral mouse model that resembled several neuropathological hallmarks observed in SCA2 disease, including formation of aggregates, neuronal marker loss, cell death and neuroinflammation. In this new model, we analyzed autophagic markers, which were also analyzed in a SCA2 cellular model and in human post-mortem brain samples. Our results showed altered levels of SQSTM1 and LC3B in cells and tissues expressing mutant ataxin-2. Moreover, an abnormal accumulation of these markers was detected in SCA2 patients' striatum and cerebellum. Importantly, the molecular activation of autophagy, using the compound cordycepin, mitigated the phenotypic alterations observed in disease models. Overall, our study suggests an important role for autophagy in the context of SCA2 pathology, proposing that targeting this pathway could be a potential target to treat SCA2 patients.


Asunto(s)
Autofagia/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Transfección
6.
Sci Rep ; 11(1): 20562, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663831

RESUMEN

Claustral foundation of nests by Atta sexdens Forel (Hymenoptera: Formicidae) involves great effort by its queens, solely responsible for the cultivation of the fungus and care for her offspring at this stage. The minimum workers, after 4 months, open access to the external environment to foraging plants to cultivate the symbiotic fungus, which decomposes the plant fragments and produces gongilidea nodules as food for the individuals in the colony. Colony gas exchange and decomposition of organic matter in underground ant nests generate carbon dioxide (CO2) emitted into the atmosphere. We described the carbon dioxide concentration in colonies in the field. The objective was to evaluate the carbon dioxide concentration in initial A. sexdens colonies, in the field, and their development. The CO2 level was also measured in 4-month-old colonies in the field, using an open respirometric system fitted with an atmospheric air inlet. The CO2 level of the respirometric container was read by introducing a tube into the nest inlet hole and the air sucked by a peristaltic pump into the CO2 meter box. The CO2 concentration in the initial colony was also measured after 4 months of age, when the offspring production (number of eggs, larvae, pupae and adult workers) stabilized. Ten perforations (15 cm deep) was carried out in the adjacent soil, without a nest of ants nearby, to determine the concentration of CO2. The composition of the nests in the field was evaluated after excavating them using a gardening shovel and they were stored in 250 ml pots with 1 cm of moistened plaster at the bottom. The CO2 concentration was higher in field nest than in adjacent soil. The concentration of carbon dioxide in A. sexdens nests in the field is higher than in those in the soil, due to the production of CO2 by the fungus garden and colony.


Asunto(s)
Dióxido de Carbono/análisis , Hongos/metabolismo , Comportamiento de Nidificación/fisiología , Animales , Hormigas/metabolismo , Hormigas/microbiología , Conducta Animal , Hongos/química , Simbiosis/fisiología
7.
Cell Death Dis ; 12(6): 592, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103467

RESUMEN

Stress granules (SGs) are membraneless cell compartments formed in response to different stress stimuli, wherein translation factors, mRNAs, RNA-binding proteins (RBPs) and other proteins coalesce together. SGs assembly is crucial for cell survival, since SGs are implicated in the regulation of translation, mRNA storage and stabilization and cell signalling, during stress. One defining feature of SGs is their dynamism, as they are quickly assembled upon stress and then rapidly dispersed after the stress source is no longer present. Recently, SGs dynamics, their components and their functions have begun to be studied in the context of human diseases. Interestingly, the regulated protein self-assembly that mediates SG formation contrasts with the pathological protein aggregation that is a feature of several neurodegenerative diseases. In particular, aberrant protein coalescence is a key feature of polyglutamine (PolyQ) diseases, a group of nine disorders that are caused by an abnormal expansion of PolyQ tract-bearing proteins, which increases the propensity of those proteins to aggregate. Available data concerning the abnormal properties of the mutant PolyQ disease-causing proteins and their involvement in stress response dysregulation strongly suggests an important role for SGs in the pathogenesis of PolyQ disorders. This review aims at discussing the evidence supporting the existence of a link between SGs functionality and PolyQ disorders, by focusing on the biology of SGs and on the way it can be altered in a PolyQ disease context.


Asunto(s)
Gránulos Citoplasmáticos/fisiología , Enfermedades Neurodegenerativas/etiología , Péptidos/metabolismo , Proteínas de Unión al ARN/fisiología , Estrés Fisiológico/fisiología , Animales , Gránulos Citoplasmáticos/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Agregación Patológica de Proteínas/complicaciones , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/fisiología
8.
Pest Manag Sci ; 77(10): 4411-4417, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33982404

RESUMEN

BACKGROUND: Leaf-cutting ants (LCAs) of the genera Atta and Acromyrmex (Hymenoptera: Formicidae) are important pests of forest plantations, agriculture and livestock. Toxic baits containing the active ingredients fipronil or sulfluramid are the main method used to control LCAs. Insecticide dispersion among members of an LCA colony during control with toxic bait is not well understood. The objective of the study was to determine whether self-grooming, allogrooming or touching behavior among Atta sexdens (Hymenoptera: Formicidae) workers disperses the insecticides fipronil and sulfluramid among members of the colony. The insecticides were topically applied on groups of A. sexdens workers and social interactions between ants with and without insecticide, and group mortality were evaluated. RESULTS: Behavioral analysis showed an increase in interaction among LCA workers as the numbers of individuals increased, with touches between workers being the most frequent behavior. The frequency of observed behaviors was higher in groups treated with sulfluramid compared with fipronil. The mortality of groups treated with fipronil was almost twice as high compared with ants treated with sulfluramid. The insecticides are probably dispersed by excessive touching among workers and subsequent self-grooming and allogrooming. CONCLUSION: These behaviors were responsible for the rapid dispersion of insecticides among members of the colony. Corroboration of the hypothesis that social interactions contaminate nestmates is a model for future studies on contamination of ant workers with active insecticide ingredients. © 2021 Society of Chemical Industry.


Asunto(s)
Hormigas , Insecticidas , Animales , Fluorocarburos , Humanos , Pirazoles , Interacción Social , Sulfonamidas
9.
BMC Res Notes ; 13(1): 210, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32276655

RESUMEN

OBJECTIVE: Compromised brain cholesterol turnover and altered regulation of brain cholesterol metabolism have been allied with some neurodegenerative diseases, including Huntington's disease (HD). Following our previous studies in HD, in this study we aim to investigate in vitro in a neuroblastoma cellular model of HD, the effect of CYP46A1 overexpression, an essential enzyme in cholesterol metabolism, on huntingtin aggregation and levels. RESULTS: We found that CYP46A1 reduces the quantity and size of mutant huntingtin aggregates in cells, as well as the levels of mutant huntingtin protein. Additionally, our results suggest that the observed beneficial effects of CYP46A1 in HD cells are linked to the activation of autophagy. Taken together, our results further demonstrate that CYP46A1 is a pertinent target to counteract HD progression.


Asunto(s)
Autofagia , Colesterol 24-Hidroxilasa/metabolismo , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Neuroblastoma , Animales , Línea Celular Tumoral , Células Cultivadas , Enfermedad de Huntington/enzimología , Ratones , Proteínas Mutantes
10.
Rev. bras. entomol ; 63(4): 290-295, Out.-Dec. 2019. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1057792

RESUMEN

ABSTRACT Leaf-cutting ants are controlled with toxic baits. For the method's greater efficiency, the baits must be distributed and processed by workers during fungus cultivation. To test hypotheses whether the mode of action of the active ingredients, which blocks the sodium channels and interrupts the production of ATP in the mitochondria, interferes with fragment distribution in nests; the dispersion of pellets fragments during fungus cultivation by workers was assessed, spatially referencing the fragment onto the fungus garden. Pellets fragments were randomly distributed, but the amount pellets fragments was influenced by the way that the active ingredient acts in the colony.

11.
Acta Neuropathol ; 138(5): 837-858, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31197505

RESUMEN

Spinocerebellar ataxias (SCAs) are devastating neurodegenerative disorders for which no curative or preventive therapies are available. Deregulation of brain cholesterol metabolism and impaired brain cholesterol turnover have been associated with several neurodegenerative diseases. SCA3 or Machado-Joseph disease (MJD) is the most prevalent ataxia worldwide. We show that cholesterol 24-hydroxylase (CYP46A1), the key enzyme allowing efflux of brain cholesterol and activating brain cholesterol turnover, is decreased in cerebellar extracts from SCA3 patients and SCA3 mice. We investigated whether reinstating CYP46A1 expression would improve the disease phenotype of SCA3 mouse models. We show that administration of adeno-associated viral vectors encoding CYP46A1 to a lentiviral-based SCA3 mouse model reduces mutant ataxin-3 accumulation, which is a hallmark of SCA3, and preserves neuronal markers. In a transgenic SCA3 model with a severe motor phenotype we confirm that cerebellar delivery of AAVrh10-CYP46A1 is strongly neuroprotective in adult mice with established pathology. CYP46A1 significantly decreases ataxin-3 protein aggregation, alleviates motor impairments and improves SCA3-associated neuropathology. In particular, improvement in Purkinje cell number and reduction of cerebellar atrophy are observed in AAVrh10-CYP46A1-treated mice. Conversely, we show that knocking-down CYP46A1 in normal mouse brain impairs cholesterol metabolism, induces motor deficits and produces strong neurodegeneration with impairment of the endosomal-lysosomal pathway, a phenotype closely resembling that of SCA3. Remarkably, we demonstrate for the first time both in vitro, in a SCA3 cellular model, and in vivo, in mouse brain, that CYP46A1 activates autophagy, which is impaired in SCA3, leading to decreased mutant ataxin-3 deposition. More broadly, we show that the beneficial effect of CYP46A1 is also observed with mutant ataxin-2 aggregates. Altogether, our results confirm a pivotal role for CYP46A1 and brain cholesterol metabolism in neuronal function, pointing to a key contribution of the neuronal cholesterol pathway in mechanisms mediating clearance of aggregate-prone proteins. This study identifies CYP46A1 as a relevant therapeutic target not only for SCA3 but also for other SCAs.


Asunto(s)
Autofagia/fisiología , Encéfalo/metabolismo , Colesterol/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Ataxias Espinocerebelosas/metabolismo , Adulto , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedad de Machado-Joseph/patología , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ataxias Espinocerebelosas/patología
12.
Database (Oxford) ; 20192019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30820574

RESUMEN

In response to different stress stimuli, cells transiently form stress granules (SGs) in order to protect themselves and re-establish homeostasis. Besides these important cellular functions, SGs are now being implicated in different human diseases, such as neurodegenerative disorders and cancer. SGs are ribonucleoprotein granules, constituted by a variety of different types of proteins, RNAs, factors involved in translation and signaling molecules, being capable of regulating mRNA translation to facilitate stress response. However, until now a complete list of the SG components has not been available. Therefore, we aimer at identifying and linting in an open access database all the proteins described so far as components of SGs. The identification was made through an exhaustive search of studies listed in PubMed and double checked. Moreover, for each identified protein several details were also gathered from public databases, such as the molecular function, the cell types in which they were detected, the type of stress stimuli used to induce SG formation and the reference of the study describing the recruitment of the component to SGs. Expression levels in the context of different neurodegenerative diseases were also obtained and are also described in the database. The Mammalian Stress Granules Proteome is available at https://msgp.pt/, being a new and unique open access online database, the first to list all the protein components of the SGs identified so far. The database constitutes an important and valuable tool for researchers in this research area of growing interest.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Bases de Datos de Proteínas , Estrés Fisiológico , Internet
13.
J Neurochem ; 148(1): 8-28, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29959858

RESUMEN

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an incurable disorder, widely regarded as the most common form of spinocerebellar ataxia in the world. MJD/SCA3 arises from mutation of the ATXN3 gene, but this simple monogenic cause contrasts with the complexity of the pathogenic mechanisms that are currently admitted to underlie neuronal dysfunction and death. The aberrantly expanded protein product - ataxin-3 - is known to aggregate and generate toxic species that disrupt several cell systems, including autophagy, proteostasis, transcription, mitochondrial function and signalling. Over the years, research into putative therapeutic approaches has often been devoted to the development of strategies that counteract disease at different stages of cellular pathogenesis. Silencing the pathogenic protein, blocking aggregation, inhibiting toxic proteolytic processing and counteracting dysfunctions of the cellular systems affected have yielded promising ameliorating results in studies with cellular and animal models. The current review analyses the available studies dedicated to the investigation of MJD/SCA3 pathogenesis and the exploration of possible therapeutic strategies, focusing primarily on gene therapy and pharmacological approaches rooted on the molecular and cellular mechanisms of disease.


Asunto(s)
Enfermedad de Machado-Joseph/fisiopatología , Enfermedad de Machado-Joseph/terapia , Animales , Humanos , Enfermedad de Machado-Joseph/genética
14.
Hum Mol Genet ; 28(1): 51-63, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30219871

RESUMEN

Machado-Joseph disease (MJD) is a neurodegenerative disorder caused by an abnormal expansion of citosine-adenine-guanine trinucleotide repeats in the disease-causing gene. This mutation leads to an abnormal polyglutamine tract in the protein ataxin-3 (Atx3), resulting in formation of mutant Atx3 aggregates. Despite several attempts to develop a therapeutic option for MJD, currently there are no available therapies capable of delaying or stopping disease progression. Recently, our group reported that reducing the expression levels of mutant Atx3 lead to a mitigation of several MJD-related behavior and neuropathological abnormalities. Aiming a more rapid translation to the human clinics, in this study we investigate a pharmacological inhibitor of translation-cordycepin-in several preclinical models. We found that cordycepin treatment significantly reduced (i) the levels of mutant Atx3, (ii) the neuropathological abnormalities in a lentiviral mouse model, (iii) the motor and neuropathological deficits in a transgenic mouse model and (iv) the number of ubiquitin aggregates in a human neural model. We hypothesize that the effect of cordycepin is mediated by the increase of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) levels, which is accompanied by a reduction in the global translation levels and by a significant activation of the autophagy pathway. Overall, this study suggests that cordycepin might constitute an effective and safe therapeutic approach for MJD, and probably for the other polyglutamine diseases.


Asunto(s)
Desoxiadenosinas/farmacología , Desoxiadenosinas/fisiología , Enfermedad de Machado-Joseph/fisiopatología , Adenilato Quinasa/efectos de los fármacos , Animales , Ataxina-3/metabolismo , Ataxina-3/fisiología , Autofagia/efectos de los fármacos , Desoxiadenosinas/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Machado-Joseph/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fosforilación , Proteínas Represoras/genética , Repeticiones de Trinucleótidos/genética
15.
Adv Exp Med Biol ; 1049: 395-438, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29427115

RESUMEN

Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.


Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/terapia , Animales , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Péptidos/genética , Péptidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
16.
Curr Pharm Des ; 23(5): 753-775, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28025946

RESUMEN

Proteolytic cleavage has been implicated in the pathogenesis of diverse neurodegenerative diseases involving abnormal protein accumulation. Polyglutamine diseases are a group of nine hereditary disorders caused by an abnormal expansion of repeated glutamine tracts contained in otherwise unrelated proteins. When expanded, these proteins display toxic properties and are prone to aggregate, but the mechanisms responsible for the selective neurodegeneration observed in polyglutamine disease patients are still poorly understood. It has been suggested that the neuronal toxicity of polyglutamine-expanded proteins is associated with the production of deleterious protein fragments. This review aims at discussing the involvement of proteolytic cleavage in the six types of spinocerebellar ataxia caused by polyglutamine expansion of proteins. The analysis takes into detailed consideration evidence concerning fragment detection and the mechanisms of fragment toxicity. Current evidence suggests that the proteins involved in spinocerebellar ataxia types 3, 6 and 7 give rise to stable proteolytic fragments. Fragments carrying polyglutamine expansions display increased tendency to aggregate and toxicity, comparing with their non-expanded counterparts or with the correspondent full-length expanded proteins. Data concerning spinocerebellar ataxia types 1, 2 and 17 is still scarce, but available results afford further investigation. Available literature suggests that proteolytic cleavage of expanded polyglutamine-containing proteins enhances toxicity in disease-associated contexts and may constitute an important step in the pathogenic cascade of polyglutamine diseases. Countering protein fragmentation thus presents itself as a promising therapeutic aim.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/etiología , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Péptidos/química , Péptidos/toxicidad , Proteolisis
17.
J Cell Biol ; 212(4): 465-80, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26880203

RESUMEN

Different neurodegenerative diseases are caused by aberrant elongation of repeated glutamine sequences normally found in particular human proteins. Although the proteins involved are ubiquitously distributed in human tissues, toxicity targets only defined neuronal populations. Changes caused by an expanded polyglutamine protein are possibly influenced by endogenous cellular mechanisms, which may be harnessed to produce neuroprotection. Here, we show that ataxin-3, the protein involved in spinocerebellar ataxia type 3, also known as Machado-Joseph disease, causes dendritic and synapse loss in cultured neurons when expanded. We report that S12 of ataxin-3 is phosphorylated in neurons and that mutating this residue so as to mimic a constitutive phosphorylated state counters the neuromorphologic defects observed. In rats stereotaxically injected with expanded ataxin-3-encoding lentiviral vectors, mutation of serine 12 reduces aggregation, neuronal loss, and synapse loss. Our results suggest that S12 plays a role in the pathogenic pathways mediated by polyglutamine-expanded ataxin-3 and that phosphorylation of this residue protects against toxicity.


Asunto(s)
Ataxina-3/metabolismo , Corteza Cerebral/enzimología , Enfermedad de Machado-Joseph/enzimología , Degeneración Nerviosa , Neuronas/enzimología , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Ataxina-3/genética , Corteza Cerebral/embriología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Fibroblastos/enzimología , Fibroblastos/patología , Edad Gestacional , Células HEK293 , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Masculino , Datos de Secuencia Molecular , Mutación , Neuronas/patología , Péptidos/metabolismo , Fosforilación , Interferencia de ARN , Ratas Wistar , Proteínas Represoras/genética , Transducción de Señal , Sinapsis/enzimología , Sinapsis/patología , Factores de Tiempo , Transfección
18.
Biochim Biophys Acta ; 1852(9): 1950-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26073430

RESUMEN

BACKGROUND: Machado-Joseph Disease (MJD), a form of dominantly inherited ataxia belonging to the group of polyQ expansion neurodegenerative disorders, occurs when a threshold value for the number of glutamines in Ataxin-3 (Atx3) polyglutamine region is exceeded. As a result of its modular multidomain architecture, Atx3 is known to engage in multiple macromolecular interactions, which might be unbalanced when the polyQ tract is expanded, culminating in the aggregation and formation of intracellular inclusions, a unifying fingerprint of this group of neurodegenerative disorders. Since aggregation is specific to certain brain regions, localization-dependent posttranslational modifications that differentially affect Atx3 might also contribute for MJD. METHODS: We combined in vitro and cellular approaches to address SUMOylation in the brain-predominant Atx3 isoform and assessed the impact of this posttranslational modification on Atx3 self-assembly and interaction with its native partner, p97. RESULTS: We demonstrate that Atx3 is SUMOylated at K356 both in vitro and in cells, which contributes for decreased formation of amyloid fibrils and for increased affinity towards p97. CONCLUSIONS AND GENERAL SIGNIFICANCE: These findings highlight the role of SUMOylation as a regulator of Atx3 function, with implications on Atx3 protein interaction network and self-assembly, with potential impact for further understanding the molecular mechanisms underlying MJD pathogenesis.

19.
Prog Neurobiol ; 95(1): 26-48, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21740957

RESUMEN

Polyglutamine (polyQ) diseases are a group of nine neurodegenerative disorders caused by an unstable CAG expansion in the codifying region of their respective associated genes. However, each polyQ disease displays a different symptomatic and pathoanatomic profile and the proteins involved share no homology outside the polyQ tract. This suggests that the other regions of the proteins and the cellular functions they mediate are important in defining disease progression and specificity. Machado-Joseph disease (MJD), the most common form of spinocerebellar ataxia worldwide, is a progressive and ultimately fatal neurodegenerative disorder caused by polyQ expansion in ataxin-3 (atx3), a conserved and ubiquitous protein known to bind polyubiquitin chains and to function as a deubiquitinating enzyme. Atx3 has been linked to protein homeostasis maintenance, transcription, cytoskeleton regulation and myogenesis, but its precise biologic function remains a mystery, limiting the understanding of the mechanisms by which the mutated protein leads to the selective neuronal death profile observed in MJD patients. A number of recent evidence support the idea that the toxic entities behind neuronal demise may be either the dysfunctional expanded atx3 or the soluble amyloid-like oligomers formed by self-assembly of the aggregation-prone mutated protein. Expanded atx3 pathogenicity is likely the result of a series of events implicating both atx3 dysfunction and aggregation, possibly involving both full-length atx3 and polyQ-containing fragments that may act as seeds for protein aggregation. A deeper understanding of polyQ protein biology, the way the expansion alters their features, and the consequences of these changes for cell functioning and survival are sure to be of critical importance for developing future treatment of polyQ diseases.


Asunto(s)
Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Enfermedad de Machado-Joseph/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos , Proteínas Represoras/metabolismo , Animales , Ataxina-3 , Muerte Celular , Modelos Animales de Enfermedad , Humanos , Modelos Biológicos , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/fisiología , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformación Proteica , Proteínas Represoras/química , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...