Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 11843, 2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481672

RESUMEN

Triple-negative breast cancers (TNBCs) are aggressive forms of breast cancer and tend to grow and spread more quickly than most other types of breast cancer. TNBCs can neither be targeted by hormonal therapies nor the antibody trastuzumab that targets the HER2 protein. There are urgent unmet medical needs to develop targeted drugs for TNBCs. We identified a small molecule NSC260594 from the NCI diversity set IV compound library. NSC260594 exhibited dramatic cytotoxicity in multiple TNBCs in a dose-and time-dependent manner. NSC260594 inhibited the Myeloid cell leukemia-1 (Mcl-1) expression through downregulation of Wnt signaling proteins. Consistent with this, NSC260594 treatment increased apoptosis, which was confirmed by using an Annexin-V/PI assay. Interestingly, NSC260594 treatment reduced the cancer stem cell (CSC) population in TNBCs. To make NSC260594 more clinically relevant, we treated NSC260594 with TNBC cell derived xenograft (CDX) mouse model, and with patient-derived xenograft (PDX) organoids. NSC260594 significantly suppressed MDA-MB-231 tumor growth in vivo, and furthermore, the combination treatment of NSC260594 and everolimus acted synergistically to decrease growth of TNBC PDX organoids. Together, we found that NSC260594 might serve as a lead compound for triple-negative breast cancer therapy through targeting Mcl-1.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Anexina A5 , Anticuerpos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
2.
Best Pract Res Clin Obstet Gynaecol ; 85(Pt B): 1-11, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36031533

RESUMEN

BACKGROUND: Enhanced recovery after surgery (ERAS) protocols improve outcomes. We investigated ERAS implementation in a population with comorbid conditions, inadequate insurance, and barriers to healthcare undergoing gynecologic surgery. OBJECTIVE: To investigate ERAS implementation in publicly insured/uninsured patients undergoing gynecologic surgery on hospital length of stay (LOS), 30-day hospital readmission rates, opioid administration, and pain scores. STUDY DESIGN: Data were obtained pre- and post-ERAS implementation. Patients undergoing gynecologic surgery with private insurance, public insurance, and uninsured were included (N = 589). LOS, readmission <30 days, opioid administration, and pain scores were assessed. RESULTS: Implementation of ERAS led to shorter LOS 1.75 vs. 1.49 days (p = 0.008). Average pain scores decreased from 3.07 pre-ERAS vs. 2.47 post-ERAS (p = <0.001). Opioid use decreased for ERAS patients (67.22 vs. 33.18, p = <0.001). Hospital readmission rates were unchanged from 8.2% pre-ERAS vs. 10.3% post-ERAS (p = 0.392). CONCLUSIONS: ERAS decreased pain scores and opioid use without increasing LOS or readmissions.


Asunto(s)
Recuperación Mejorada Después de la Cirugía , Humanos , Femenino , Analgésicos Opioides , Estudios Retrospectivos , Procedimientos Quirúrgicos Ginecológicos/métodos , Tiempo de Internación , Dolor/etiología , Complicaciones Posoperatorias/etiología
3.
Cancer Metastasis Rev ; 41(3): 549-573, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35999486

RESUMEN

The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.


Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Neoplasias de la Mama/patología , Carcinogénesis/patología , Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/patología , Citocinas/metabolismo , Humanos , Masculino , Obesidad/complicaciones , Obesidad/metabolismo , Células del Estroma/metabolismo , Microambiente Tumoral
4.
Mol Cancer ; 21(1): 138, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768871

RESUMEN

BACKGROUND: Triple-negative breast cancers (TNBCs) are clinically aggressive subtypes of breast cancer. TNBC is difficult to treat with targeted agents due to the lack of commonly targeted therapies within this subtype. Androgen receptor (AR) has been detected in 12-55% of TNBCs. AR stimulates breast tumor growth in the absence of estrogen receptor (ER), and it has become an emerging molecular target in TNBC treatment. METHODS: Ceritinib is a small molecule inhibitor of tyrosine kinase and it is used in the therapy of non-small lung cancer patients. Enzalutamide is a small molecule compound targeting the androgen receptor and it is used to treat prostate cancer. Combination therapy of these drugs were investigated using AR positive breast cancer mouse xenograft models. Also, combination treatment of ceritinib and paclitaxel investigated using AR- and AR low mouse xenograft and patient derived xenograft models. RESULTS: We screened 133 FDA approved drugs that have a therapeutic effect of AR+ TNBC cells. From the screen, we identified two drugs, ceritinib and crizotinib. Since ceritinib has a well- defined role in androgen independent AR signaling pathways, we further investigated the effect of ceritinib. Ceritinib treatment inhibited RTK/ACK/AR pathway and other downstream pathways in AR+ TNBC cells. The combination of ceritinib and enzalutamide showed a robust inhibitory effect on cell growth of AR+ TNBC cells in vitro and in vivo. Interestingly Ceritinib inhibits FAK-YB-1 signaling pathway that leads to paclitaxel resistance in all types of TNBC cells. The combination of paclitaxel and ceritinib showed drastic inhibition of tumor growth compared to a single drug alone. CONCLUSIONS: To improve the response of AR antagonist in AR positive TNBC, we designed a novel combinational strategy comprised of enzalutamide and ceritinib to treat AR+ TNBC tumors through the dual blockade of androgen-dependent and androgen-independent AR signaling pathways. Furthermore, we introduced a novel therapeutic combination of ceritinib and paclitaxel for AR negative or AR-low TNBCs and this combination inhibited tumor growth to a great extent. All agents used in our study are FDA-approved, and thus the proposed combination therapy will likely be useful in the clinic.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Andrógenos/uso terapéutico , Animales , Línea Celular Tumoral , Humanos , Ratones , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Pirimidinas , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Sulfonas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
5.
Front Mol Biosci ; 9: 847505, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755802

RESUMEN

Liver kinase B1 (LKB1) is a potent tumor suppressor that regulates cellular energy balance and metabolism as an upstream kinase of the AMP-activated protein kinase (AMPK) pathway. LKB1 regulates cancer cell invasion and metastasis in multiple cancer types, including breast cancer. In this study, we evaluated LKB1's role as a regulator of the tumor microenvironment (TME). This was achieved by seeding the MDA-MB-231-LKB1 overexpressing cell line onto adipose and tumor scaffolds, followed by the evaluation of tumor matrix-induced tumorigenesis and metastasis. Results demonstrated that the presence of tumor matrix enhanced tumorigenesis in both MDA-MB-231 and MDA-MB-231-LKB1 cell lines. Metastasis was increased in both MDA-MB-231 and -LKB1 cells seeded on the tumor scaffold. Endpoint analysis of tumor and adipose scaffolds revealed LKB1-mediated tumor microenvironment remodeling as evident through altered matrix protein production. The proteomic analysis determined that LKB1 overexpression preferentially decreased all major and minor fibril collagens (collagens I, III, V, and XI). In addition, proteins observed to be absent in tumor scaffolds in the LKB1 overexpressing cell line included those associated with the adipose matrix (COL6A2) and regulators of adipogenesis (IL17RB and IGFBP4), suggesting a role for LKB1 in tumor-mediated adipogenesis. Histological analysis of MDA-MB-231-LKB1-seeded tumors demonstrated decreased total fibril collagen and indicated decreased stromal cell presence. In accordance with this, in vitro condition medium studies demonstrated that the MDA-MB-231-LKB1 secretome inhibited adipogenesis of adipose-derived stem cells. Taken together, these data demonstrate a role for LKB1 in regulating the tumor microenvironment through fibril matrix remodeling and suppression of adipogenesis.

6.
SLAS Discov ; 27(3): 191-200, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35124274

RESUMEN

3D cell models derived from patient tumors are highly translational tools that can recapitulate the complex genetic and molecular compositions of solid cancers and accelerate identification of drug targets and drug testing. However, the complexity of performing assays with such models remains a hurdle for their wider adoption. In the present study, we describe methods for processing and multi-functional profiling of tumoroid samples to test compound effects using a novel flowchip system in combination with high content imaging and metabolite analysis. Tumoroids were formed from primary cells isolated from a patient-derived tumor explant, TU-BcX-4IC, that represents metaplastic breast cancer with a triple-negative breast cancer subtype. Assays were performed in a microfluidics-based device (Pu⋅MA System) that allows automated exchange of media and treatments of tumoroids in a tissue culture incubator environment. Multi-functional assay profiling was performed on tumoroids treated with anti-cancer drugs. High-content imaging was used to evaluate drug effects on cell viability and expression of E-cadherin and CD44. Lactate secretion was used to measure tumoroid metabolism as a function of time and drug concentration. Observed responses included loss of cell viability, decrease in E-cadherin expression, and increase of lactate production. Importantly, the tumoroids were sensitive to romidepsin and trametinib, while showed significantly reduced sensitivity to paclitaxel and cytarabine, consistent with the primary tumor response. These methods for multi-parametric profiling of drug effects in patient-derived tumoroids provide an in depth understanding of drug sensitivity of individual tumor types, with important implications for the future development of personalized medicine.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Antineoplásicos/farmacología , Cadherinas , Humanos , Ácido Láctico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
7.
Breast Cancer Res Treat ; 189(1): 49-61, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34196902

RESUMEN

PURPOSE: Breast cancer remains a prominent global disease affecting women worldwide despite the emergence of novel therapeutic regimens. Metastasis is responsible for most cancer-related deaths, and acquisition of a mesenchymal and migratory cancer cell phenotypes contributes to this devastating disease. The utilization of kinase targets in drug discovery have revolutionized the field of cancer research but despite impressive advancements in kinase-targeting drugs, a large portion of the human kinome remains understudied in cancer. NEK5, a member of the Never-in-mitosis kinase family, is an example of such an understudied kinase. Here, we characterized the function of NEK5 in breast cancer. METHODS: Stably overexpressing NEK5 cell lines (MCF7) and shRNA knockdown cell lines (MDA-MB-231, TU-BcX-4IC) were utilized. Cell morphology changes were evaluated using immunofluorescence and quantification of cytoskeletal components. Cell proliferation was assessed by Ki-67 staining and transwell migration assays tested cell migration capabilities. In vivo experiments with murine models were necessary to demonstrate NEK5 function in breast cancer tumor growth and metastasis. RESULTS: NEK5 activation altered breast cancer cell morphology and promoted cell migration independent of effects on cell proliferation. NEK5 overexpression or knockdown does not alter tumor growth kinetics but promotes or suppresses metastatic potential in a cell type-specific manner, respectively. CONCLUSION: While NEK5 activity modulated cytoskeletal changes and cell motility, NEK5 activity affected cell seeding capabilities but not metastatic colonization or proliferation in vivo. Here we characterized NEK5 function in breast cancer systems and we implicate NEK5 in regulating specific steps of metastatic progression.


Asunto(s)
Neoplasias de la Mama , Quinasas Relacionadas con NIMA , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Quinasas Relacionadas con NIMA/genética , Fenotipo , ARN Interferente Pequeño
8.
Breast Cancer Res Treat ; 189(1): 25-37, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34231077

RESUMEN

PURPOSE: The transcription factors ZEB1 and ZEB2 mediate epithelial-to-mesenchymal transition (EMT) and metastatic progression in numerous malignancies including breast cancer. ZEB1 and ZEB2 drive EMT through transcriptional repression of cell-cell junction proteins and members of the tumor suppressive miR200 family. However, in estrogen receptor positive (ER +) breast cancer, the role of ZEB2 as an independent driver of metastasis has not been fully investigated. METHODS: In the current study, we induced exogenous expression of ZEB2 in ER + MCF-7 and ZR-75-1 breast cancer cell lines and examined EMT gene expression and metastasis using dose-response qRT-PCR, transwell migration assays, proliferation assays with immunofluorescence of Ki-67 staining. We used RNA sequencing to identify pathways and genes affected by ZEB2 overexpression. Finally, we treated ZEB2-overexpressing cells with 17ß-estradiol (E2) or ICI 182,780 to evaluate how ZEB2 affects estrogen response. RESULTS: Contrary to expectation, we found that ZEB2 did not increase canonical epithelial nor decrease mesenchymal gene expressions. Furthermore, ZEB2 overexpression did not promote a mesenchymal cell morphology. However, ZEB1 and ZEB2 protein expression induced significant migration of MCF-7 and ZR-75-1 breast cancer cells in vitro and MCF-7 xenograft metastasis in vivo. Transcriptomic (RNA sequencing) pathway analysis revealed alterations in estrogen signaling regulators and pathways, suggesting a role for ZEB2 in endocrine sensitivity in luminal A breast cancer. Expression of ZEB2 was negatively correlated with estrogen receptor complex genes in luminal A patient tumors. Furthermore, treatment with 17ß-estradiol (E2) or the estrogen receptor antagonist ICI 182,780 had no effect on growth of ZEB2-overexpressing cells. CONCLUSION: ZEB2 is a multi-functional regulator of drug sensitivity, cell migration, and metastasis in ER + breast cancer and functions through non-canonical mechanisms.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Femenino , Fulvestrant , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
9.
Oncoscience ; 8: 64-71, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026925

RESUMEN

Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited targeted therapeutic options. A defining feature of TNBC is the propensity to metastasize and acquire resistance to cytotoxic agents. Mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK) signaling pathways have integral roles in cancer development and progression. While MEK5/ERK5 signaling drives mesenchymal and migratory cell phenotypes in breast cancer, the specific mechanisms underlying these actions remain under-characterized. To elucidate the mechanisms through which MEK5 regulates the mesenchymal and migratory phenotype, we generated stably transfected constitutively active MEK5 (MEK5-ca) TNBC cells. Downstream signaling pathways and candidate targets of MEK5-ca cells were based on RNA sequencing and confirmed using qPCR and Western blot analyses. MEK5 activation drove a mesenchymal cell phenotype independent of cell proliferation effects. Transwell migration assays demonstrated MEK5 activation significantly increased breast cancer cell migration. In this study, we provide supporting evidence that MEK5 functions through FRA-1 to regulate the mesenchymal and migratory phenotype in TNBC.

10.
Front Bioeng Biotechnol ; 9: 618448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791282

RESUMEN

Solid tumor progression is significantly influenced by interactions between cancer cells and the surrounding extracellular matrix (ECM). Specifically, the cancer cell-driven changes to ECM fiber alignment and collagen deposition impact tumor growth and metastasis. Current methods of quantifying these processes are incomplete, require simple or artificial matrixes, rely on uncommon imaging techniques, preclude the use of biological and technical replicates, require destruction of the tissue, or are prone to segmentation errors. We present a set of methodological solutions to these shortcomings that were developed to quantify these processes in cultured, ex vivo human breast tissue under the influence of breast cancer cells and allow for the study of ECM in primary breast tumors. Herein, we describe a method of quantifying fiber alignment that can analyze complex native ECM from scanning electron micrographs that does not preclude the use of replicates and a high-throughput mechanism of quantifying collagen content that is non-destructive. The use of these methods accurately recapitulated cancer cell-driven changes in fiber alignment and collagen deposition observed by visual inspection. Additionally, these methods successfully identified increased fiber alignment in primary human breast tumors when compared to human breast tissue and increased collagen deposition in lobular breast cancer when compared to ductal breast cancer. The successful quantification of fiber alignment and collagen deposition using these methods encourages their use for future studies of ECM dysregulation in human solid tumors.

12.
J Cell Biochem ; 122(8): 835-850, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33876843

RESUMEN

Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT) when cells adopt a motile and invasive phenotype through loss of epithelial markers (CDH1), and acquisition of mesenchymal markers (VIM, CDH2). Although MAPK/ERK1/2 kinase inhibitors (MEKi) are useful antitumor agents in a clinical setting, including the Food and Drug Administration (FDA)-approved MEK1,2 dual inhibitors cobimetinib and trametinib, there are limitations to their clinical utility, primarily adaptation of the BRAF pathway and ocular toxicities. The MEK5 (HGNC: MAP2K5) pathway has important roles in metastatic progression of various cancer types, including those of the prostate, colon, bone and breast, and elevated levels of ERK5 expression in breast carcinomas are linked to a worse prognoses in TNBC patients. The purpose of this study is to explore MEK5 regulation of the EMT axis and to evaluate a novel pan-MEK inhibitor on clinically aggressive TNBC cells. Our results show a distinction between the MEK1/2 and MEK5 cascades in maintenance of the mesenchymal phenotype, suggesting that the MEK5 pathway may be necessary and sufficient in EMT regulation while MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Furthermore, additive effects on MET induction are evident through the inhibition of both MEK1/2 and MEK5. Taken together, these data demonstrate the need for a better understanding of the individual roles of MEK1/2 and MEK5 signaling in breast cancer and provide a rationale for the combined targeting of these pathways to circumvent compensatory signaling and subsequent therapeutic resistance.


Asunto(s)
Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , MAP Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 5/antagonistas & inhibidores , MAP Quinasa Quinasa 5/genética , Células MCF-7 , Proteínas Proto-Oncogénicas c-fos/genética , Neoplasias de la Mama Triple Negativas/genética
13.
Oncol Lett ; 21(5): 380, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33777204

RESUMEN

Chemokine receptor 4 (CXCR4) and its ligand stromal-derived factor 1 (SDF-1) have well-characterized functions in cancer metastasis; however, the specific mechanisms through which CXCR4 promotes a metastatic and drug-resistant phenotype remain widely unknown. The aim of the present study was to demonstrate the application of a phenotypic screening approach using a small molecule inhibitor library to identify potential CXCR4-mediated signaling pathways. The present study demonstrated a new application of the Published Kinase Inhibitor Set (PKIS), a library of small molecule inhibitors from diverse chemotype series with varying levels of selectivity, in a phenotypic medium-throughput screen to identify potential mechanisms to pursue. Crystal violet staining and brightfield microscopy were employed to evaluate relative cell survival and changes to cell morphology in the screens. 'Hits' or lead active compounds in the first screen were PKIS inhibitors that reversed mesenchymal morphologies in CXCR4-activated breast cancer cells without the COOH-terminal domain (MCF-7-CXCR4-ΔCTD) and in the phenotypically mesenchymal triple-negative breast cancer cells (MDA-MB-231, BT-549 and MDA-MB-157), used as positive controls. In a following screen, the phenotypic and cell viability screen was used with a positive control that was both morphologically mesenchymal and had acquired fulvestrant resistance. Compounds within the same chemotype series were identified that exhibited biological activity in the screens, the 'active' inhibitors, were compared with inactive compounds. Relative kinase activity was obtained using published datasets to discover candidate kinase targets responsible for CXCR4 activity. MAP4K4 and MINK reversed both the mesenchymal and drug-resistant phenotypes, NEK9 and DYRK2 only reversed the mesenchymal morphology, and kinases, including ROS, LCK, HCK and LTK, altered the fulvestrant-resistant phenotype. Oligoarray experiments revealed pathways affected in CXCR4-activated cells, and these pathways were compared with the present screening approach to validate our screening tool. The oligoarray approach identified the integrin-mediated, ephrin B-related, RhoA, RAC1 and ErbB signaling pathways to be upregulated in MCF-7-CXCR4-ΔCTD cells, with ephrin B signaling also identified in the PKIS phenotypic screen. The present screening tool may be used to discover potential mechanisms of targeted signaling pathways in solid cancers.

14.
Curr Med Chem ; 28(30): 6096-6109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33749548

RESUMEN

Mitotic kinases have integral roles in cell processes responsible for cancer development and progression in all tumor types and are common targets for therapeutics. However, a large subset of the human kinome remains unexplored with respect to functionality in cancer systems. Within the mitotic kinases, the never-in-mitosis kinase (NEK) family is emerging as novel kinase targets in various cancer types. NEK5 is an understudied member of the NEK family. While there are more recent studies describing the physiologic function of NEK5, its role in cancer biology remains widely understudied. However, emerging studies implicate that NEK5 has potentially crucial functions in various solid tumors. In this review, we discuss current knowledge regarding the role of NEK5 in cancer and the implications of NEK5 expression and activity in tumor development and metastasis. We summarize current studies that examine NEK5 activity in diverse cancer systems and cellular processes. As an understudied kinase, there are currently no selective NEK5-targeting agents to test the effects of pharmacologic inhibition on cancer, although there exist recent advancements in this area. Here we also include an update on efforts to develop selective pharmacologic inhibition of NEK5, and we discuss the current direction of NEK5-targeting therapeutic development. The generation of selective NEK5 inhibitors is promising new targeted therapies for cancer growth and metastasis.


Asunto(s)
Mitosis , Quinasas Relacionadas con NIMA , Neoplasias , Humanos , Quinasas Relacionadas con NIMA/genética , Neoplasias/tratamiento farmacológico
15.
Transl Oncol ; 14(6): 101046, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33761370

RESUMEN

The epithelial to mesenchymal transition (EMT) is characterized by a loss of cell polarity, a decrease in the epithelial cell marker E-cadherin, and an increase in mesenchymal markers including the zinc-finger E-box binding homeobox (ZEB1). The EMT is also associated with an increase in cell migration and anchorage-independent growth. Induction of a reversal of the EMT, a mesenchymal to epithelial transition (MET), is an emerging strategy being explored to attenuate the metastatic potential of aggressive cancer types, such as triple-negative breast cancers (TNBCs) and tamoxifen-resistant (TAMR) ER-positive breast cancers, which have a mesenchymal phenotype. Patients with these aggressive cancers have poor prognoses, quick relapse, and resistance to most chemotherapeutic drugs. Overexpression of extracellular signal-regulated kinase (ERK) 1/2 and ERK5 is associated with poor patient survival in breast cancer. Moreover, TNBC and tamoxifen resistant cancers are unresponsive to most targeted clinical therapies and there is a dire need for alternative therapies. In the current study, we found that MAPK3, MAPK1, and MAPK7 gene expression correlated with EMT markers and poor overall survival in breast cancer patients using publicly available datasets. The effect of ERK1/2 and ERK5 pathway inhibition on MET was evaluated in MDA-MB-231, BT-549 TNBC cells, and tamoxifen-resistant MCF-7 breast cancer cells. Moreover, TU-BcX-4IC patient-derived primary TNBC cells were included to enhance the translational relevance of our study. We evaluated the effect of pharmacological inhibitors and lentivirus-induced activation or inhibition of the MEK1/2-ERK1/2 and MEK5-ERK5 pathways on cell morphology, E-cadherin, vimentin and ZEB1 expression. Additionally, the effects of pharmacological inhibition of trametinib and XMD8-92 on nuclear localization of ERK1/2 and ERK5, cell migration, proliferation, and spheroid formation were evaluated. Novel compounds that target the MEK1/2 and MEK5 pathways were used in combination with the AKT inhibitor ipatasertib to understand cell-specific responses to kinase inhibition. The results from this study will aid in the design of innovative therapeutic strategies that target cancer metastases.

16.
Biomolecules ; 11(2)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572742

RESUMEN

Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-ß (TGF-ß), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and ß-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Mutación , Neoplasias/metabolismo , Animales , Adhesión Celular , Citoesqueleto/metabolismo , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/metabolismo
17.
PLoS One ; 15(10): e0226464, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33035223

RESUMEN

Metaplastic breast carcinoma (MBC) is a clinically aggressive and rare subtype of breast cancer, with similar features to basal-like breast cancers. Due to rapid growth rates and characteristic heterogeneity, MBC is often unresponsive to standard chemotherapies; and novel targeted therapeutic discovery is urgently needed. Histone deacetylase inhibitors (DACi) suppress tumor growth and metastasis through regulation of the epithelial-to-mesenchymal transition axis in various cancers, including basal-like breast cancers. We utilized a new MBC patient-derived xenograft (PDX) to examine the effect of DACi therapy on MBC. Cell morphology, cell cycle-associated gene expressions, transwell migration, and metastasis were evaluated in patient-derived cells and tumors after treatment with romidepsin and panobinostat. Derivations of our PDX model, including cells, spheres, organoids, explants, and in vivo implanted tumors were treated. Finally, we tested the effects of combining DACi with approved chemotherapeutics on relative cell biomass. DACi significantly suppressed the total number of lung metastasis in vivo using our PDX model, suggesting a role for DACi in preventing circulating tumor cells from seeding distal tissue sites. These data were supported by our findings that DACi reduced cell migration, populations, and expression of mesenchymal-associated genes. While DACi treatment did affect cell cycle-regulating genes in vitro, tumor growth was not affected compared to controls. Importantly, gene expression results varied depending on the cellular or tumor system used, emphasizing the importance of using multiple derivations of cancer models in preclinical therapeutic discovery research. Furthermore, DACi sensitized and produced a synergistic effect with approved oncology therapeutics on inherently resistant MBC. This study introduced a role for DACi in suppressing the migratory and mesenchymal phenotype of MBC cells through regulation of the epithelial-mesenchymal transition axis and suppression of the CTC population. Preliminary evidence that DACi treatment in combination with MEK1/2 inhibitors exerts a synergistic effect on MBC cells was also demonstrated.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Depsipéptidos/administración & dosificación , Inhibidores de Histona Desacetilasas/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Panobinostat/administración & dosificación , Animales , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Depsipéptidos/farmacología , Sinergismo Farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Neoplasias Pulmonares/genética , Ratones , Persona de Mediana Edad , Células Neoplásicas Circulantes/efectos de los fármacos , Panobinostat/farmacología , Modelación Específica para el Paciente , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología
18.
Anticancer Drugs ; 31(8): 759-775, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32796402

RESUMEN

Breast cancer affects women globally; the majority of breast cancer-related mortalities are due to metastasis. Acquisition of a mesenchymal phenotype has been implicated in the progression of breast cancer cells to an invasive, metastatic state. Triple-negative breast cancer (TNBC) subtypes have high rates of metastases, recurrence, and have poorer prognoses compared to other breast cancer types, partially due to lack of commonly targeted receptors. Kinases have diverse and pivotal functions in metastasis in TNBC, and discovery of new kinase targets for TNBC is warranted. We previously used a screening approach to identify intermediate-synthesis nonpotent, nonselective small-molecule inhibitors from the Published Kinase Inhibitor Set that reversed the mesenchymal phenotype in TNBC cells. Two of these inhibitors (GSK346294A and GSK448459A) are structurally similar, but have unique kinase activity profiles and exhibited differential biologic effects on TNBC cells, specifically on epithelial-to-mesenchymal transition (EMT). Here, we further interrogate these effects and compare activity of these inhibitors on transwell migration, gene (qRT-PCR) and protein (western blot) expressions, and cancer stem cell-like behavior. We incorporated translational patient-derived xenograft models in these studies, and we focused on the lead inhibitor hit, GSK346294A, to demonstrate the utility of our comparative analysis as a screening modality to identify novel kinase targets and signaling pathways to pursue in TNBC. This study introduces a new method for discovering novel kinase targets that reverse the EMT phenotype; this screening approach can be applied to all cancer types and is not limited to breast cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Estructura Molecular , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fosforilación , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Front Oncol ; 10: 1164, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850332

RESUMEN

Conventional mitogen-activated protein kinase (MAPK) family members regulate diverse cellular processes involved in tumor initiation and progression, yet the role of ERK5 in cancer biology is not fully understood. Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. ERK5 signaling contributes to drug resistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT). More recently a role for ERK5 in regulation of the extracellular matrix (ECM) has been proposed, and here we investigated the necessity of ERK5 in TNBC tumor formation. Depletion of ERK5 expression using the CRISPR/Cas9 system in MDA-MB-231 and Hs-578T cells resulted in loss of mesenchymal features, as observed through gene expression profile and cell morphology, and suppressed TNBC cell migration. In vivo xenograft experiments revealed ERK5 knockout disrupted tumor growth kinetics, which was restored using high concentration Matrigel™ and ERK5-ko reduced expression of the angiogenesis marker CD31. These findings implicated a role for ERK5 in the extracellular matrix (ECM) and matrix integrity. RNA-sequencing analyses demonstrated downregulation of matrix-associated genes, integrins, and pro-angiogenic factors in ERK5-ko cells. Tissue decellularization combined with cryo-SEM and interrogation of biomechanical properties revealed that ERK5-ko resulted in loss of key ECM fiber alignment and mechanosensing capabilities in breast cancer xenografts compared to parental wild-type cells. In this study, we identified a novel role for ERK5 in tumor growth kinetics through modulation of the ECM and angiogenesis axis in breast cancer.

20.
Womens Health Rep (New Rochelle) ; 1(1): 383-392, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33786503

RESUMEN

Despite a decline in overall incidence rates for cancer in the past decade, due in part to impressive advancements in both diagnosis and treatment, breast cancer (BC) remains the leading cause of cancer-related deaths in women. BC alone accounts for ∼30% of all new cancer diagnoses in women worldwide. Triple-negative BC (TNBC), defined as having no expression of the estrogen or progesterone receptors and no amplification of the HER2 receptor, is a subtype of BC that does not benefit from the use of estrogen receptor-targeting or HER2-targeting therapies. Differences in socioeconomic factors and cell intrinsic and extrinsic characteristics have been demonstrated in Black and White TNBC patient tumors. The emergence of patient-derived xenograft (PDX) models as a surrogate, translational, and functional representation of the patient with TNBC has led to the advances in drug discovery and testing of novel targeted approaches and combination therapies. However, current established TNBC PDX models fail to represent the diverse patient population and, most importantly, the specific ethnic patient populations that have higher rates of incidence and mortality. The primary aim of this review is to emphasize the importance of using clinically relevant translatable tumor models that reflect TNBC human tumor biology and heterogeneity in high-risk patient populations. The focus is to highlight the complexity of BC as it specifically relates to the management of TNBC in Black women. We discuss the importance of utilizing PDX models to study the extracellular matrix (ECM), and the distinct differences in ECM composition and biophysical properties in Black and White women. Finally, we demonstrate the crucial importance of PDX models toward novel drug discovery in this patient population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...