Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(22): 9330-9349, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38747564

RESUMEN

Four neutral Rh1-Rh4 complexes of the general formula [Rh2(CH3COO)4L2], where L is an N-alkylimidazole ligand, were synthesized and characterized using various spectroscopic techniques, and in the case of Rh4 the crystal structure was confirmed. Investigation of the interactions of these complexes with HSA by fluorescence spectroscopy revealed that the binding constants Kb are moderately strong (∼104 M-1), and site-marker competition experiments showed that the complexes bind to Heme site III (subdomain IB). Competitive binding studies for CT DNA using EB and HOE showed that the complexes bind to the minor groove, which was also confirmed by viscosity experiments. Molecular docking confirmed the experimental data for HSA and CT DNA. Antimicrobial tests showed that the Rh2-Rh4 complexes exerted a strong inhibitory effect on G+ bacteria B. cereus and G- bacteria V. parahaemolyticus as well as on the yeast C. tropicalis, which showed a higher sensitivity compared to fluconazole. The cytotoxic activity of Rh1-Rh4 complexes tested on three cancer cell lines (HeLa, HCT116 and MDA-MB-231) and on healthy MRC-5 cells showed that all investigated complexes elicited more efficient cytotoxicity on all tested tumor cells than on control cells. Investigation of the mechanism of action revealed that the Rh1-Rh4 complexes inhibit cell proliferation via different mechanisms of action, namely apoptosis (increase in expression of the pro-apoptotic Bax protein and caspase-3 protein in HeLa and HCT116 cells; changes in mitochondrial potential and mitochondrial damage; release of cytochrome c from the mitochondria; cell cycle arrest in G2/M phase in both HeLa and HCT116 cells together with a decrease in the expression of cyclin A and cyclin B) and autophagy (reduction in the expression of the protein p62 in HeLa and HCT116 cells).


Asunto(s)
Antineoplásicos , Apoptosis , Complejos de Coordinación , Rodio , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Apoptosis/efectos de los fármacos , Rodio/química , Rodio/farmacología , Simulación del Acoplamiento Molecular , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Candida tropicalis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Células HeLa
2.
J Inorg Biochem ; 213: 111256, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32980642

RESUMEN

Three new ruthenium(II) complexes were synthesized from different substituted isothiazole ligands 5-(methylamino)-3-pyrrolidine-1-ylisothiazole-4-carbonitrile (1), 5-(methylamino)-3-(4-methylpiperazine-1-yl)isothiazole-4-carbonitrile (2) and 5-(methylamino)-3-morpholine-4-ylisothiazole-4-carbonitrile (3): [Ru(η6-p-cymene)Cl2(L1)]·H2O (4), [Ru(η6-p-cymene)Cl2(L2)] (5) and [Ru(η6-p-cymene)Cl2(L3)] (6). All complexes were characterized by IR, UV-Vis, NMR spectroscopy, and elemental analysis. The molecular structures of all ligands and complexes 4 and 6 were determined by an X-ray. The results of the interactions of CT-DNA (calf thymus deoxyribonucleic acid) and HSA (human serum albumin) with ruthenium (II) complexes reveal that complex 4 binds well to CT-DNA and HSA. Kinetic and thermodynamic parameters for the reaction between complex and HSA confirmed the associative mode of interaction. The results of Quantum mechanics (QM) modelling and docking experiments toward DNA dodecamer and HSA support the strongest binding of the complex 4 to DNA major groove, as well as its binding to IIa domain of HSA with the lowest ΔG energy, which agrees with the solution studies. The modified GOLD docking results are indicative for Ru(p-cymene)LCl··(HSA··GLU292) binding and GOLD/MOPAC(QM) docking/modelling of DNA/Ligand (Ru(II)-N(7)dG7) covalent binding. The cytotoxic activity of compounds was evaluated by MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay. Neither of the tested compounds shows activity against a healthy MRC-5 cell line while the MCF-7 cell line is the most sensitive to all. Compounds 3, 4 and 5 were about two times more active than cisplatin, while the antiproliferative activity of 6 was almost the same as with cisplatin. Flow cytometry analysis showed the apoptotic death of the cells with a cell cycle arrest in the subG1 phase.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/farmacología , Cimenos/química , ADN/química , Compuestos de Rutenio/farmacología , Albúmina Sérica Humana/química , Tiazoles/química , Línea Celular Tumoral , Complejos de Coordinación/química , Humanos , Ligandos , Compuestos de Rutenio/química , Análisis Espectral/métodos
3.
Dalton Trans ; 43(40): 15126-37, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25177821

RESUMEN

Novel palladium complexes, KH[Pd(obap)]2·3H2O (3) with oxamido-N-aminopropyl-N'-benzoic acid and [Pd(apox)] (4) with N,N'-bis(3-aminopropyl)ethanediamide, were synthesized. Exhaustive synthetic, solution and structural studies of the two Pd(ii) complexes are reported. The binary and ternary systems of the Pd(ii) ion with H2apox or H3obap as primary ligands and nucleosides (Ado or Cyt) as secondary ligands, are investigated in order to better understand their equilibrium chemistry. The relative stabilities of the ternary complexes are determined and compared with those of the corresponding binary complexes in terms of their Δlog K values. The species distribution of all complexes in solution is evaluated. Fluorescence spectroscopy data shows that the fluorescence quenching of HSA is a result of the formation of the [PdL]-HSA complex. The structure of complex 3 is confirmed using X-ray crystallography. The results are compared to those obtained for palladium complexes of similar structures. Density functional theory (DFT) has been applied for modelling and energetic analysis purposes. The nature of the Pd-N(O) bond interaction is analyzed using NBO. We report here docking simulation experiments in order to predict the most probable mechanism of pro-drug-action. The next free binding energy order of the best scores from the [PdL]-DNA docking simulations, cis-[Pt(NH3)2(H2O)2](2+) > [Pd(obap)] > [Pd(mda)], has been observed in the case of DNA alteration. For the ER and cytosolic stress mechanisms the results of the docking simulations to the chaperons Grp78 and Hsc70 are promising for possible applications as potent protein inhibitors (Ki of [Pd(mda)]/GRP78 being ∼66 µM and Ki for [Pd(obap)]/HSC70 being 14.39 µM).


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Ácido Oxámico/análogos & derivados , Paladio/química , Paladio/farmacología , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , ADN/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Nucleósidos/metabolismo , Ácido Oxámico/síntesis química , Ácido Oxámico/química , Ácido Oxámico/farmacología , Albúmina Sérica/metabolismo
4.
J Comput Chem ; 34(31): 2687-96, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24105618

RESUMEN

A ligand field molecular mechanics (LFMM) force field (FF) has been developed for d(9) copper(II) complexes of aminopolycarboxylate ligands. Training data were derived from density functional theory (DFT) geometry optimizations of 14 complexes comprising potentially hexadentate N2O4, tetrasubstituted ethylenediamine (ed), and propylenediamine cores with various combinations of acetate and propionate side arms. The FF was validated against 13 experimental structures from X-ray crystallography including hexadentate N2O4 donors where the nitrogens donors are forced to be cis and bis-tridentate ONO ligands which generate complexes with trans nitrogen donors. Stochastic conformational searches for [Cu{ed(acetate)n(propionate)(4-n)}](2-), n = 0-4, were carried out and the lowest conformers for each system reoptimized with DFT. In each case, both DFT and LFMM predict the same lowest-energy conformer and the structures and energies of the higher-energy conformers are also in satisfactory agreement. The relative interaction energies for n = 0, 2, and 4 computed by molecular mechanics correlate with the experimental log ß binding affinities. Adding in the predicted log ß values for n = 1 and 3 suggest for this set of complexes a monotonic decrease in log ß as the number of propionate arms increases.

5.
Dalton Trans ; 42(37): 13357-68, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23884426

RESUMEN

The O-N-N-O-type tetradentate ligands H2S,S-eddp (H2S,S-eddp stands for S,S-ethylenediamine-N,N'-di-2-propionic acid) and H2edap (H2edap stands for ethylenediamine-N-acetic-N'-3-propionic acid) and the corresponding novel octahedral nickel(II) complexes have been prepared and characterized. N2O2 ligands coordinate to the nickel(II) ion via four donor atoms (two deprotonated carboxylate atoms and two amine nitrogens) affording octahedral geometry in the case of all investigated Ni(II) complexes. A six coordinate, octahedral geometry has been verified crystallographically for the s-cis-[Ni(S,S-eddp)(H2O)2] complex. Structural data correlating similarly chelated Ni(II) complexes have been used to carry out an extensive configuration analysis. Molecular mechanics and Density Functional Theory (DFT) have been used to model the most stable geometric isomer, yielding, at the same time, significant structural and spectroscopic (TDDFT) data. The results from density functional studies have been compared to X-ray data. Natural Bond Orbital (NBO) and Natural Energetic Decomposition Analysis (NEDA) have been done for the [Ni(edda-type)(H2O)(2-n)] and nH2O fragments. Molecular orbital analysis (MPA) is given as well. The infra-red and electronic absorption spectra of the complexes are discussed in comparison to the related complexes of known geometries.


Asunto(s)
Quelantes/química , Complejos de Coordinación/química , Níquel/química , Óxidos de Nitrógeno/química , Teoría Cuántica , Quelantes/síntesis química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Molecular
6.
J Inorg Biochem ; 121: 134-44, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23376555

RESUMEN

Novel square-planar palladium(II) complexes with O-N-N-O-type ligands H4mda (H4mda=malamido-N,N'-diacetic acid) and H4obp (H4obp=oxamido-N,N'-di-3-propionic acid) were prepared and characterized. The ligands coordinate to the palladium(II) ion via two pairs of deprotonated ligating atoms with square chelation. A four coordinate, square-planar geometry was verified crystallographicaly for the K2[Pd(mda)]·H2O complex. The binary and ternary systems of Pd(II) ion with H4mda or H4obp (L) as primary ligands and guanosine (A) as secondary ligand were studied in aqueous solutions in 0.1 M NaCl ionic medium at 25 °C by potentiometric titrations. In addition, calculations based on density functional methods (DFT) were carried out. A natural bonding orbital analysis indicated that the Pd-N bonds are three-centric in nature and mainly governed by charge transfer via a strong delocalization of the oxygen lone pair with "p" character into the bonding Pd-N orbital. Mononuclear palladium(II) complexes together with amido acid N,O-containing ligands were tested against several tumor cells and reveal significant antitumor activity and lower resistance of tumor cells in vitro than cisplatin. In this paper, interactions of palladium complexes with DNA are discussed in order to provide guidance and determine structure and antitumor activity relationships for continuing studies of these systems. Docking simulation on DNA dodecamer or 29-mer (Lippard solved crystal structures), suggests several favorable interactions with the hydrogen pocket/binding site for the incoming ligands. These results support amidoacids/Pd complexes as novel antitumor drugs and suggest that their potent cell life inhibition may contribute to its anti-cancer efficacy.


Asunto(s)
Amidas/química , Antineoplásicos/química , Antineoplásicos/síntesis química , Ácidos Carboxílicos/química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Paladio/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Guanosina/química , Humanos , Concentración 50 Inhibidora , Ligandos , Simulación del Acoplamiento Molecular , Potenciometría , Teoría Cuántica , Cloruro de Sodio/química , Relación Estructura-Actividad
7.
Inorg Chem ; 52(3): 1238-47, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23330645

RESUMEN

Copper(II) complexes of hexadentate ethylenediaminetetracarboxylic acid type ligands H(4)eda3p and H(4)eddadp (H(4)eda3p = ethylenediamine-N-acetic-N,N',N'-tri-3-propionic acid; H(4)eddadp = ethylenediamine-N,N'-diacetic-N,N'-di-3-propionic acid) have been prepared. An octahedral trans(O(6)) geometry (two propionate ligands coordinated in axial positions) has been established crystallographically for the Ba[Cu(eda3p)]·8H(2)O compound, while Ba[Cu(eddadp)]·8H(2)O is proposed to adopt a trans(O(5)) geometry (two axial acetates) on the basis of density functional theory calculations and comparisons of IR and UV-vis spectral data. Experimental and computed structural data correlating similar copper(II) chelate complexes have been used to better understand the isomerism and departure from regular octahedral geometry within the series. The in-plane O-Cu-N chelate angles show the smallest deviation from the ideal octahedral value of 90°, and hence the lowest strain, for the eddadp complex with two equatorial ß-propionate rings. A linear dependence between tetragonality and the number of five-membered rings has been established. A natural bonding orbital analysis of the series of complexes is also presented.


Asunto(s)
Cobre/química , Etilenodiaminas/química , Compuestos Organometálicos/química , Teoría Cuántica , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química
8.
Int J Mol Sci ; 13(2): 2521-2534, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22408469

RESUMEN

The aim of this study is to examine the growth inhibitory effects of methanolic leaf and fruit extracts of L. vulgare on HCT-116 cells over different time periods and their synergistic effect with a Pd(apox) complex. The antiproliferative activity of plant extracts alone or in combination with the Pd(apox) complex was determined using MTT cell viability assay, where the IC(50) value was used as a parameter of cytotoxicity. Results show that antiproliferative effects of L. vulgare extracts increase with extension of exposure time, with decreasing IC(50) values, except for 72 h where the IC(50) values for methanolic leaf extract were lower than for the fruit extract. The Pd(apox) complex alone had a weak antiproliferative effect, but combination with L. vulgare extracts caused stronger effects with lower IC(50) values than with L. vulgare extracts alone. The type of cell death was explored by fluorescence microscopy using the acridin orange/ethidium bromide method. Treatments with plant extracts caused typical apoptotic morphological changes in HCT-116 cells and co-treatments with Pd(apox) complex caused higher levels of apoptotic cells than treatment with plant extracts alone. The results indicate that L. vulgare is a considerable source of natural bioactive substances with antiproliferative activity on HCT-116 cells and which have a substantial synergistic effect with the Pd(apox) complex.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ligustrum/química , Paladio/farmacología , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Relación Dosis-Respuesta a Droga , Células HCT116 , Humanos , Metanol/química , Extractos Vegetales/química , Hojas de la Planta/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...