Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Meas Sci Au ; 2(6): 605-619, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36589347

RESUMEN

Sea spray aerosol (SSA) is one of the largest global sources of atmospheric aerosol, but little is known about SSA generated in coastal regions with salinity gradients near estuaries and river outflows. SSA particles are chemically complex with substantial particle-to-particle variability due to changes in water temperature, salinity, and biological activity. In previous studies, the ability to resolve the aerosol composition to the level of individual particles has proven necessary for the accurate parameterization of the direct and indirect aerosol effects; therefore, measurements of individual SSA particles are needed for the characterization of this large source of atmospheric aerosol. An integrated analytical measurement approach is required to probe the chemical composition of individual SSA particles. By combining complementary vibrational microspectroscopic (Raman and optical photothermal infrared, O-PTIR) measurements with elemental information from computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM-EDX), we gained unique insights into the individual particle chemical composition and morphology. Herein, we analyzed particles from four experiments on laboratory-based SSA production using coastal seawater collected in January 2018 from the Gulf of Maine. Individual salt particles were enriched in organics compared to that in natural seawater, both with and without added microalgal filtrate, with greater enrichment observed for smaller particle sizes, as evidenced by higher carbon/sodium ratios. Functional group analysis was carried out using the Raman and infrared spectra collected from individual SSA particles. Additionally, the Raman spectra were compared with a library of Raman spectra consisting of marine-derived organic compounds. Saccharides, followed by fatty acids, were the dominant components of the organic coatings surrounding the salt cores of these particles. This combined Raman, infrared, and X-ray spectroscopic approach will enable further understanding of the factors determining the individual particle composition, which is important for understanding the impacts of SSA produced within estuaries and river outflows, as well as areas of snow and ice melt.

2.
Gels ; 7(4)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34842644

RESUMEN

Marine polymer gels play a critical role in regulating ocean basin scale biogeochemical dynamics. This brief review introduces the crucial role of marine gels as a source of aerosol particles and cloud condensation nuclei (CCN) in cloud formation processes, emphasizing Arctic marine microgels. We review the gel's composition and relation to aerosols, their emergent properties, and physico-chemical processes that explain their change in size spectra, specifically in relation to aerosols and CCN. Understanding organic aerosols and CCN in this context provides clear benefits to quantifying the role of marine nanogel/microgel in microphysical processes leading to cloud formation. This review emphasizes the DOC-marine gel/aerosolized gel-cloud link, critical to developing accurate climate models.

3.
Mar Pollut Bull ; 157: 111280, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32658664

RESUMEN

The effects of microplastic fibers (MPF) on the survival, molting and oxygen consumption rates of larval (I-III) and post-larval (IV) stages of the American lobster, Homarus americanus, were quantified as a function of MPF concentration and food availability. Only the highest MPF concentration decreased early larval survival. MPF did not affect the timing or rate of molting across MPF treatments. While all larval and post-larval stages accumulated MPF under the cephalothorax carapace, stage II larvae and stage IV post-larvae showed the highest and lowest accumulation, respectively. MPF ingestion increased with larval stage and with MPF concentration; under starvation conditions, stage I larvae only ingested them at low MPF concentrations. Oxygen consumption rates were lower only in later larval stages when exposed to high MPF concentrations. Combined, our results indicate that MPF interactions and effects on American lobster larvae are dependent on larval stage, MPF concentration, and presence of food.


Asunto(s)
Nephropidae , Plásticos , Animales , Larva , Microplásticos , Muda
4.
Mar Pollut Bull ; 137: 638-645, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30503478

RESUMEN

Microplastic fibers (MPF) are a ubiquitous marine contaminant, making up to 90% of global microplastic concentrations. Imaging flow cytometry was used to measure uptake and ingestion rates of MPF by blue mussels (Mytilus edulis). Mussels were fed a diet of Rhodomonas salina and MPF concentrations up to 30 MPF mL-1, or 0.374% of available seston. Filtration rates were greatly reduced in mussels exposed to MPF. Uptake of MPF followed a Holling's Type II functional response with 95% of the maximum rate (5227 MPF h-1) occurring at 13 MPF mL-1. An average of 39 MPF (SE ±â€¯15, n = 4) was found in feces (maximum of 70 MPF). Most MPF (71%) were quickly rejected as pseudofeces, with approximately 9% ingested and <1% excreted in feces. Mussels may act as microplastic sinks in Gulf of Maine coastal waters, where MPF concentrations are near the order of magnitude as the experimental treatments herein.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Contenido Digestivo/química , Mytilus edulis/fisiología , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Ingestión de Alimentos , Citometría de Flujo/métodos , Maine , Mytilus edulis/efectos de los fármacos , Plásticos/farmacocinética , Contaminantes Químicos del Agua/farmacocinética
5.
J Geophys Res Oceans ; 121(12): 8635-8669, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32818130

RESUMEN

The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Zeu), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling.

6.
J Geophys Res Oceans ; 120(9): 6508-6541, 2015 09.
Artículo en Inglés | MEDLINE | ID: mdl-27668139

RESUMEN

We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters.

7.
Proc Natl Acad Sci U S A ; 108(33): 13612-7, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21825118

RESUMEN

Marine microgels play an important role in regulating ocean basin-scale biogeochemical dynamics. In this paper, we demonstrate that, in the high Arctic, marine gels with unique physicochemical characteristics originate in the organic material produced by ice algae and/or phytoplankton in the surface water. The polymers in this dissolved organic pool assembled faster and with higher microgel yields than at other latitudes. The reversible phase transitions shown by these Arctic marine gels, as a function of pH, dimethylsulfide, and dimethylsulfoniopropionate concentrations, stimulate the gels to attain sizes below 1 µm in diameter. These marine gels were identified with an antibody probe specific toward material from the surface waters, sized, and quantified in airborne aerosol, fog, and cloud water, strongly suggesting that they dominate the available cloud condensation nuclei number population in the high Arctic (north of 80°N) during the summer season. Knowledge about emergent properties of marine gels provides important new insights into the processes controlling cloud formation and radiative forcing, and links the biology at the ocean surface with cloud properties and climate over the central Arctic Ocean and, probably, all oceans.


Asunto(s)
Geles/química , Transición de Fase , Agua de Mar/química , Aerosoles , Regiones Árticas , Concentración de Iones de Hidrógeno , Océanos y Mares , Sulfuros , Tiempo (Meteorología)
8.
J Phycol ; 47(1): 112-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27021716

RESUMEN

Despite the global importance of dimethylsulfoniopropionate (DMSP)/dimethyl sulfide (DMS) and their role in climate regulation, little is known about the mechanisms of their production and storage in Phaeocystis sp., a major contributor of DMS in polar areas. Phaeocystis secretes polymer microgels, by regulated exocytosis, remaining in condensed phase while stored in secretory vesicles (Chin et al. 2004). In secretory cells, vesicles also store small molecules, which are released during exocytosis. Here, we demonstrated that DMSP and DMS were stored in the secretory vesicles of Phaeocystis antarctica G. Karst. They were trapped within a polyanionic gel matrix, which prevented an accurate measurement of their concentration in the absence of a chelating agent such as EDTA. Understanding the production and the export mechanisms of DMSP and DMS into seawater is important because of the impact the cellular and extracellular pools of these highly relevant biogeochemical metabolites have on the environment. The pool of total DMSP in the presence of Phaeocystis may be underestimated by as much as half. Obtaining accurate budget measurements is the first step toward gaining a better understanding of key issues related to the DMS ocean-air interaction and the effect of phytoplankton DMS production on climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...