Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119800, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38071919

RESUMEN

Hydropower is a reliable source of renewable energy, and its future expansion is likely to be in the form of either smaller new stream development (NSD) projects or powering existing non-powered dams. Thresholds for entrainment risk to fish and the requirements for fish exclusion at hydropower facilities often differ depending on the species involved, the characteristics of the facility, and the goals of stakeholders, but little quantitative information is present within the literature regarding the specific costs of fish exclusion measures. Cost data associated with protection, mitigation, and enhancement (PM&E) measures related to positive barrier screening were identified using keyword searches of an existing environmental mitigation cost data set and manual extraction from regulatory licensing documents available in the Federal Energy Regulatory Commission (FERC) eLibrary. This approach yielded a total of 50 p.m.&E mitigation measures with estimated capital construction costs pertaining to positive barrier screens and represented <10% of the 171 total FERC project dockets available in the data set. These data were highly skewed toward conventional relicensing projects, as <7% were associated with NSD projects. Results indicate highly variable costs are associated with fish screening, with flow-normalized costs one to two orders of magnitude higher for screening with the highest exclusion capability (≤0.09 in. spacing) compared with coarser screening (1-2 in.). These data provide an initial baseline for estimating exclusion costs for hydropower development and may help developers consider options for more fish-friendly generation technologies, though gaps remain relating to a lack of data, particularly for NSD projects.


Asunto(s)
Peces , Energía Renovable , Animales , Ríos
2.
Sci Total Environ ; 893: 164851, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37329910

RESUMEN

Greenhouse gas (GHG) emissions from reservoirs are influenced by many factors, including the reservoir's morphology, watershed, and local climate. Failure to account for diversity in waterbody characteristics contributes to uncertainties in estimates of total waterbody GHG emissions and limits the ability to extrapolate patterns from one set of reservoirs to another. Hydropower reservoirs are of particular interest given recent studies that show variable - and sometimes very high - measurements and estimates of emissions. This study uses characteristics describing reservoir surface morphology and location within the watershed to identify US hydropower reservoir archetypes that represent the diversity of reservoir features relevant to GHG emissions. The majority of reservoirs are characterized by smaller watersheds, smaller surface areas, and lower elevations. Downscaled climate projections of temperature and precipitation mapped onto the archetypes show large variability in hydroclimate stresses (i.e., changes in precipitation and air temperature) within and across different reservoir types. Average air temperatures are projected to increase for all reservoirs by the end of the century, relative to historical conditions, while projected precipitation is much more variable across all archetypes. Variability in projected climate suggests that despite similar morphology-related traits, reservoirs may experience different shifts in climate, potentially resulting in a divergence in carbon processing and GHG emissions from historical conditions. Low representation in published GHG emission measurements among several reservoir archetypes (roughly 14 % of the population of hydropower reservoirs), highlights a potential limit to the generalization of current measurements and models. This multi-dimensional analysis of waterbodies and their local hydroclimate provides valuable context for the growing body of GHG accounting literature and ongoing empirical and modeling studies.

3.
Sci Adv ; 9(3): eadc8728, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662866

RESUMEN

Marine coccolithophores are globally distributed, unicellular phytoplankton that produce nanopatterned, calcite biominerals (coccoliths). These biominerals are synthesized internally, deposited into an extracellular coccosphere, and routinely released into the external medium, where they profoundly affect the global carbon cycle. The cellular costs and benefits of calcification remain unresolved. Here, we show observational and experimental evidence, supported by biophysical modeling, that free coccoliths are highly adsorptive biominerals that readily interact with cells to form chimeric coccospheres and with viruses to form "viroliths," which facilitate infection. Adsorption to cells is mediated by organic matter associated with the coccolith base plate and varies with biomineral morphology. Biomineral hitchhiking increases host-virus encounters by nearly an order of magnitude and can be the dominant mode of infection under stormy conditions, fundamentally altering how we view biomineral-cell-virus interactions in the environment.


Asunto(s)
Haptophyta , Virosis , Humanos , Adsorción , Carbonato de Calcio , Calcificación Fisiológica
4.
Environ Microbiol ; 25(2): 315-330, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36397254

RESUMEN

Coccolithophores are an important group of calcifying marine phytoplankton. Although coccolithophores are not silicified, some species exhibit a requirement for Si in the calcification process. These species also possess a novel protein (SITL) that resembles the SIT family of Si transporters found in diatoms. However, the nature of Si transport in coccolithophores is not yet known, making it difficult to determine the wider role of Si in coccolithophore biology. Here, we show that coccolithophore SITLs act as Na+ -coupled Si transporters when expressed in heterologous systems and exhibit similar characteristics to diatom SITs. We find that CbSITL from Coccolithus braarudii is transcriptionally regulated by Si availability and is expressed in environmental coccolithophore populations. However, the Si requirement of C. braarudii and other coccolithophores is very low, with transport rates of exogenous Si below the level of detection in sensitive assays of Si transport. As coccoliths contain only low levels of Si, we propose that Si acts to support the calcification process, rather than forming a structural component of the coccolith itself. Si is therefore acting as a micronutrient in coccolithophores and natural populations are only likely to experience Si limitation in circumstances where dissolved silicon (DSi) is depleted to extreme levels.


Asunto(s)
Diatomeas , Haptophyta , Silicio/metabolismo , Fitoplancton/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Calcificación Fisiológica , Haptophyta/genética , Haptophyta/metabolismo
5.
J Hazard Mater ; 438: 129427, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35797787

RESUMEN

Environmental contamination due to human activities is a major concern, particularly for persistent chemicals. Within catchments, persistent chemicals linked to negative health outcomes such as polychlorinated biphenyls (PCBs) have great potential to be transported, through adsorption or biological uptake, with downstream locations acting as sinks for accumulation. Here we present long-term trends in PCB bioaccumulation in fish found in lower-order tributaries on the Oak Ridge Reservation, an impacted US Department of Energy property in East Tennessee, USA, and a large reservoir system adjacent to it composed of parts of the Clinch and Tennessee Rivers. Given that the reservoir system has experienced no direct PCB mitigation activities, this record offers an opportunity to explore potential natural attenuation of PCBs within a large lotic ecosystem. Attenuation rates ranged from 0% to 8% yr-1 in minnows and sunfish at stream sites and 5.4-11.3% yr-1 in catfish at reservoir sites. These rates are comparable to findings from similar studies in other regions, suggesting a consistency in responses since the banning of PCB production in 1979. Further, results suggest that PCB sources from discharge outfalls are important locally but are not primarily responsible for sustaining PCB contamination in downstream reservoirs.


Asunto(s)
Cyprinidae , Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente/métodos , Humanos , Bifenilos Policlorados/análisis , Ríos/química , Tennessee , Contaminantes Químicos del Agua/análisis
6.
ACS Omega ; 5(36): 23009-23020, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32954151

RESUMEN

Inexpensive and sustainable methods are needed to reclaim nutrients from agricultural waste solutions for use as a fertilizer while decreasing nutrient runoff. Fe(III)-polysaccharide hydrogels are able to flocculate solids and absorb nutrients in liquid animal waste from Confined Animal Feeding Operations (CAFOs). Fe(III)-alginate beads absorbed 0.05 mg g-1 NH4 + and NO3 - from 100 ppm solutions at pH = 7, with > 80% phosphate uptake and ∼30% uptake of ammonium and nitrate. Ammonium uptake from a raw manure solution (1420 ppm NH4 +) showed a significant 0.7 mg g-1 uptake. Tomato plant trials carried out with Fe(III)-alginate hydrogel beads in greenhouse conditions showed controlled nutrient delivery for the plants compared to fertilizer solution with the same nutrient content. Plants showed an uptake of Fe from the gel beads, and Fe(III)-alginate hydrogel beads promoted root growth of the plants. The plants treated with nutrient-loaded Fe(III)-alginate hydrogels yielded comparable tomato harvest to plants treated with the conventional fertilizer solution.

7.
Limnol Oceanogr ; 65(12): 2866-2882, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33707786

RESUMEN

The Maumee River is the primary source for nutrients fueling seasonal Microcystis-dominated blooms in western Lake Erie's open waters though such blooms in the river are infrequent. The river also serves as source water for multiple public water systems and a large food services facility in northwest Ohio, USA. On 20 September 2017, an unprecedented bloom was reported in the Maumee River estuary within the Toledo metropolitan area, which triggered a recreational water advisory. Here we (1) explore physical drivers likely contributing to the bloom's occurrence, and (2) describe the toxin concentration and bacterioplankton taxonomic composition. A historical analysis using ten-years of seasonal river discharge, water level, and local wind data identified two instances when high-retention conditions occurred over ≥10 days in the Maumee River estuary: in 2016 and during the 2017 bloom. Observation by remote sensing imagery supported the advection of cyanobacterial cells into the estuary from the lake during 2017 and the lack of an estuary bloom in 2016 due to a weak cyanobacterial bloom in the lake. A rapid-response survey during the 2017 bloom determined levels of the cyanotoxins, specifically microcystins, in excess of recreational contact limits at sites within the lower 20 km of the river while amplicon sequencing found these sites were dominated by Microcystis. These results highlight the need to broaden our understanding of physical drivers of cyanobacterial blooms within the interface between riverine and lacustrine systems, particularly as such blooms are expected to become more prominent in response to a changing climate.

8.
Front Microbiol ; 10: 2081, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551998

RESUMEN

This study examined diel shifts in metabolic functions of Microcystis spp. during a 48-h Lagrangian survey of a toxin-producing cyanobacterial bloom in western Lake Erie in the aftermath of the 2014 Toledo Water Crisis. Transcripts mapped to the genomes of recently sequenced lower Great Lakes Microcystis isolates showed distinct patterns of gene expression between samples collected across day (10:00 h, 16:00 h) and night (22:00 h, 04:00 h). Daytime transcripts were enriched in functions related to Photosystem II (e.g., psbA), nitrogen and phosphate acquisition, cell division (ftsHZ), heat shock response (dnaK, groEL), and uptake of inorganic carbon (rbc, bicA). Genes transcribed during nighttime included those involved in phycobilisome protein synthesis and Photosystem I core subunits. Hierarchical clustering and principal component analysis (PCA) showed a tightly clustered group of nighttime expressed genes, whereas daytime transcripts were separated from each other over the 48-h duration. Lack of uniform clustering within the daytime transcripts suggested that the partitioning of gene expression in Microcystis is dependent on both circadian regulation and physicochemical changes within the environment.

9.
PLoS One ; 11(9): e0162313, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27584038

RESUMEN

The species concept in marine phytoplankton is defined based on genomic, morphological, and functional properties. Reports of intraspecific diversity are widespread across major phytoplankton groups but the impacts of this variation on ecological and biogeochemical processes are often overlooked. Intraspecific diversity is well known within coccolithophores, which play an important role in the marine carbon cycle via production of particulate inorganic carbon. In this study, we investigated strain-specific responses to temperature in terms of morphology, carbon production, and carbonate mineralogy using a combination of microscopy, elemental analysis, flow cytometry, and nuclear magnetic resonance. Two strains of the cosmopolitan coccolithophore E. huxleyi isolated from different regions (subtropical, CCMP371; temperate, CCMP3266) were cultured under a range of temperature conditions (10°C, 15°C, and 20°C) using batch cultures and sampled during both exponential and stationary growth. Results for both strains showed that growth rates decreased at lower temperatures while coccosphere size increased. Between 15°C and 20°C, both strains produced similar amounts of total carbon, but differed in allocation of that carbon between particulate inorganic carbon (PIC) and particulate organic carbon (POC), though temperature effects were not detected. Between 10°C and 20°C, temperature effects on daily production of PIC and POC, as well as the cellular quota of POC were detected in CCMP3266. Strain-specific differences in coccolith shedding rates were found during exponential growth. In addition, daily shedding rates were negatively related to temperature in CCMP371 but not in CCMP3266. Despite differences in rates of particulate inorganic carbon production, both strains were found to produce coccoliths composed entirely of pure calcite, as established by solid-state 13C and 43Ca NMR and X-ray diffraction measurements. These results highlight the limitations of the species concept and the need for a trait-based system to better quantify diversity within marine phytoplankton communities.


Asunto(s)
Cambio Climático , Eucariontes/clasificación , Carbono/metabolismo , Eucariontes/metabolismo , Resonancia Magnética Nuclear Biomolecular , Especificidad de la Especie
10.
PLoS One ; 9(9): e107239, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25221950

RESUMEN

Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.


Asunto(s)
Cubierta de Hielo , Agua de Mar/química , Regiones Antárticas , Ecosistema , Concentración de Iones de Hidrógeno
11.
PLoS One ; 8(1): e52448, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300974

RESUMEN

The Southern Ocean, a region that will be an ocean acidification hotspot in the near future, is home to a uniquely adapted fauna that includes a diversity of lightly-calcified invertebrates. We exposed the larvae of the echinoid Sterechinus neumayeri to environmental levels of CO(2) in McMurdo Sound (control: 410 µatm, Ω = 1.35) and mildly elevated pCO(2) levels, both near the level of the aragonite saturation horizon (510 µatm pCO(2), Ω = 1.12), and to under-saturating conditions (730 µatm, Ω = 0.82). Early embryological development was normal under these conditions with the exception of the hatching process, which was slightly delayed. Appearance of the initial calcium carbonate (CaCO(3)) spicule nuclei among the primary mesenchyme cells of the gastrulae was synchronous between control and elevated pCO(2) treatments. However, by prism (7 days after the initial appearance of the spicule nucleus), elongating arm rod spicules were already significantly shorter in the highest CO(2) treatment. Unfed larvae in the 730 µatm pCO(2) treatment remained significantly smaller than unfed control larvae at days 15-30, and larvae in the 510 µatm treatment were significantly smaller at day 20. At day 30, the arm lengths were more differentiated between 730 µatm and control CO(2) treatments than were body lengths as components of total length. Arm length is the most plastic morphological aspect of the echinopluteus, and appears to exhibit the greatest response to high pCO(2)/low pH/low carbonate, even in the absence of food. Thus, while the effects of elevated pCO(2) representative of near future climate scenarios are proportionally minor on these early developmental stages, the longer term effects on these long-lived invertebrates is still unknown.


Asunto(s)
Dióxido de Carbono/metabolismo , Erizos de Mar/embriología , Erizos de Mar/crecimiento & desarrollo , Animales , Regiones Antárticas , Carbonato de Calcio/metabolismo , Clima , Frío , Ecosistema , Concentración de Iones de Hidrógeno , Microscopía , Océanos y Mares , Salinidad , Agua de Mar , Factores de Tiempo
12.
Biol Bull ; 223(3): 312-27, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23264477

RESUMEN

Ocean acidification (OA) is expected to have a major impact on marine species, particularly during early life-history stages. These effects appear to be species-specific and may include reduced survival, altered morphology, and depressed metabolism. However, less information is available regarding the bioenergetics of development under elevated CO(2) conditions. We examined the biochemical and morphological responses of Strongylocentrotus purpuratus during early development under ecologically relevant levels of pCO(2) (365, 1030, and 1450 µatm) that may occur during intense upwelling events. The principal findings of this study were (1) lipid utilization rates and protein content in S. purpuratus did not vary with pCO(2); (2) larval growth was reduced at elevated pCO(2) despite similar rates of energy utilization; and (3) relationships between egg phospholipid content and larval length were found under control but not high pCO(2) conditions. These results suggest that this species may either prioritize endogenous energy toward development and physiological function at the expense of growth, or that reduced larval length may be strictly due to higher costs of growth under OA conditions. This study highlights the need to further expand our knowledge of the physiological mechanisms involved in OA response in order to better understand how present populations may respond to global environmental change.


Asunto(s)
Dióxido de Carbono/metabolismo , Metabolismo de los Lípidos , Proteínas/análisis , Strongylocentrotus purpuratus/crecimiento & desarrollo , Animales , Femenino , Masculino , Presión Parcial , Strongylocentrotus purpuratus/anatomía & histología , Strongylocentrotus purpuratus/química
13.
PLoS One ; 6(12): e28983, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22205986

RESUMEN

The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2), reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO(2), often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO(2). Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.


Asunto(s)
Ecosistema , Agua de Mar/química , Organismos Acuáticos , Concentración de Iones de Hidrógeno , Océanos y Mares , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...