Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3762, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704378

RESUMEN

Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown. Here, we establish an efficient identification system for the target proteases in Arabidopsis apoplastic fluid; the method employs native two-dimensional electrophoresis followed by an in-gel proteolytic assay using a fluorescence-quenching peptide substrate. We designed a substrate to specifically detect proteolytic activity at the C-terminus of the flg22 epitope in flagellin and identified two plant subtilases, SBT5.2 and SBT1.7, as specific proteases responsible for the C-terminal cleavage of flg22. In the apoplastic fluid of Arabidopsis mutant plants deficient in these two proteases, we observe a decrease in the C-terminal cleavage of the flg22 domain from flagellin, leading to a decrease in the efficiency of flg22 epitope liberation. Consequently, defensive reactive oxygen species (ROS) production is delayed in sbt5.2 sbt1.7 double-mutant leaf disks compared to wild type following flagellin exposure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Epítopos , Flagelina , Especies Reactivas de Oxígeno , Subtilisinas , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Epítopos/inmunología , Epítopos/metabolismo , Flagelina/metabolismo , Flagelina/inmunología , Mutación , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Subtilisinas/metabolismo , Subtilisinas/genética
2.
Nat Commun ; 15(1): 733, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286991

RESUMEN

Legumes control root nodule symbiosis (RNS) in response to environmental nitrogen availability. Despite the recent understanding of the molecular basis of external nitrate-mediated control of RNS, it remains mostly elusive how plants regulate physiological processes depending on internal nitrogen status. In addition, iron (Fe) acts as an essential element that enables symbiotic nitrogen fixation; however, the mechanism of Fe accumulation in nodules is poorly understood. Here, we focus on the transcriptome in response to internal nitrogen status during RNS in Lotus japonicus and identify that IRON MAN (IMA) peptide genes are expressed during symbiotic nitrogen fixation. We show that LjIMA1 and LjIMA2 expressed in the shoot and root play systemic and local roles in concentrating internal Fe to the nodule. Furthermore, IMA peptides have conserved roles in regulating nitrogen homeostasis by adjusting nitrogen-Fe balance in L. japonicus and Arabidopsis thaliana. These findings indicate that IMA-mediated Fe provision plays an essential role in regulating nitrogen-related physiological processes.


Asunto(s)
Arabidopsis , Lotus , Humanos , Nódulos de las Raíces de las Plantas/metabolismo , Nitrógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lotus/metabolismo , Fijación del Nitrógeno/fisiología , Simbiosis/fisiología , Homeostasis , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nodulación de la Raíz de la Planta/genética
3.
Commun Biol ; 6(1): 89, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690657

RESUMEN

Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.


Asunto(s)
Chlorophyta , Genoma , Filogenia , Chlorophyta/genética , Genómica , Agua Dulce
4.
Plant J ; 113(3): 493-503, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36511822

RESUMEN

Arabinogalactan proteins (AGPs) are a plant-specific family of extracellular proteoglycans characterized by large and complex galactose-rich polysaccharide chains. Functional elucidation of AGPs, however, has been hindered by the high degree of redundancy of AGP genes. To uncover as yet unexplored roles of AGPs in Arabidopsis, a mutant of Hyp O-galactosyltransferase (HPGT), a critical enzyme that catalyzes the common initial step of Hyp-linked arabinogalactan chain biosynthesis, was used. Here we show, using the hpgt1,2,3 triple mutant, that a reduction in functional AGPs leads to a stomatal patterning defect in which two or more stomata are clustered together. This defect is attributed to increased and dysregulated symplastic transport following changes in plasmodesmata structure, such that highly permeable complex branched plasmodesmata with cavities in branching parts increased in the mutant. We also found that the hpgt1,2,3 mutation causes a reduction of cellulose in the cell wall and accumulation of pectin, which controls cell wall porosity. Our results highlight the importance of AGPs in the correct biogenesis of plasmodesmata, possibly acting through the regulation of cell wall properties surrounding the plasmodesmata.


Asunto(s)
Arabidopsis , Plasmodesmos , Plasmodesmos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Mucoproteínas/genética , Pared Celular/metabolismo
5.
Science ; 378(6616): 175-180, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36227996

RESUMEN

Deciding whether to grow or to divert energy to stress responses is a major physiological trade-off for plants surviving in fluctuating environments. We show that three leucine-rich repeat receptor kinases (LRR-RKs) act as direct ligand-perceiving receptors for PLANT PEPTIDE CONTAINING SULFATED TYROSINE (PSY)-family peptides and mediate switching between two opposing pathways. By contrast to known LRR-RKs, which activate signaling upon ligand binding, PSY receptors (PSYRs) activate the expression of various genes encoding stress response transcription factors upon depletion of the ligands. Loss of PSYRs results in defects in plant tolerance to both biotic and abiotic stresses. This ligand-deprivation-dependent activation system potentially enables plants to exert tuned regulation of stress responses in the tissues proximal to metabolically dysfunctional damaged sites where ligand production is impaired.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Repetidas Ricas en Leucina , Péptidos , Estrés Fisiológico , Factores de Transcripción , Regulación de la Expresión Génica de las Plantas , Ligandos , Péptidos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Repetidas Ricas en Leucina/genética , Proteínas Repetidas Ricas en Leucina/metabolismo
6.
Nat Plants ; 7(3): 310-316, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33686225

RESUMEN

The nitrate transporter NRT2.1, which plays a central role in high-affinity nitrate uptake in roots, is activated at the post-translational level in response to nitrogen (N) starvation1,2. However, the critical enzymes required for the post-translational activation of NRT2.1 remain to be identified. Here, we show that a type 2C protein phosphatase, designated CEPD-induced phosphatase (CEPH), activates high-affinity nitrate uptake by directly dephosphorylating Ser501 of NRT2.1, a residue that functions as a negative phospho-switch in Arabidopsis2. CEPH is predominantly expressed in epidermal and cortex cells in roots and is upregulated by N starvation via a CEPDL2/CEPD1/2-mediated long-distance signalling from shoots3,4. The loss of CEPH leads to marked decreases in high-affinity nitrate uptake, tissue nitrate content and plant biomass. Collectively, our results identify CEPH as a crucial enzyme in the N-starvation-dependent activation of NRT2.1 and provide molecular and mechanistic insights into how plants regulate high-affinity nitrate uptake at the post-translational level in response to the N environment.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Arabidopsis/enzimología , Glutarredoxinas/metabolismo , Fosforilación , Serina/metabolismo
7.
Nat Commun ; 11(1): 641, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005881

RESUMEN

Plants modulate the efficiency of root nitrogen (N) acquisition in response to shoot N demand. However, molecular components directly involved in this shoot-to-root communication remain to be identified. Here, we show that phloem-mobile CEPD-like 2 (CEPDL2) polypeptide is upregulated in the leaf vasculature in response to decreased shoot N status and, after translocation to the roots, promotes high-affinity uptake and root-to-shoot transport of nitrate. Loss of CEPDL2 leads to a reduction in shoot nitrate content and plant biomass. CEPDL2 contributes to N acquisition cooperatively with CEPD1 and CEPD2 which mediate root N status, and the complete loss of all three proteins severely impairs N homeostasis in plants. Reciprocal grafting analysis provides conclusive evidence that the shoot CEPDL2/CEPD1/2 genotype defines the high-affinity nitrate uptake activity in root. Our results indicate that plants integrate shoot N status and root N status in leaves and systemically regulate the efficiency of root N acquisition.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glutarredoxinas/metabolismo , Nitratos/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Glutarredoxinas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Brotes de la Planta/genética
8.
Commun Biol ; 2: 61, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30793040

RESUMEN

Intercellular signaling mediated by peptide hormones and membrane-localized receptor kinases plays crucial roles in plant developmental processes. Because of their diverse functions, agonistic or antagonistic modulation of peptide signaling holds enormous promise for agricultural applications. Here we established a high-throughput screening system using a bead-immobilized receptor kinase and fluorescent-labeled peptide ligand to identify small molecules that bind peptide hormone receptors in competition with natural ligands. We used the Arabidopsis CLE9-BAM1 ligand-receptor pair to screen a library of ≈30,000 chemicals and identified NPD12704 as an antagonist for BAM1. NPD12704 also inhibited CLV3 binding to BAM1 but only minimally interfered with CLV3 binding to CLV1, the closest homolog of BAM1, demonstrating preferential receptor specificity. Treatment of clv1-101 mutant seedlings with NPD12704 enhanced the enlarged shoot apical meristem phenotype. Our results provide a technological framework enabling high-throughput identification of small non-peptide chemicals that specifically control receptor kinase-mediated peptide hormone signaling in plants.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/genética , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Unión Competitiva , Ensayos Analíticos de Alto Rendimiento , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Meristema/efectos de los fármacos , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Reguladores del Crecimiento de las Plantas/química , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
9.
J Exp Bot ; 70(2): 507-517, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30351431

RESUMEN

Legumes can survive in nitrogen-deficient environments by forming root-nodule symbioses with rhizobial bacteria; however, forming nodules consumes energy, and nodule numbers must thus be strictly controlled. Previous studies identified major negative regulators of nodulation in Lotus japonicus, including the small peptides CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and CLE-RS3, and their putative major receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1). CLE-RS2 is known to be expressed in rhizobia-inoculated roots, and is predicted to be post-translationally arabinosylated, a modification essential for its activity. Moreover, all three CLE-RSs suppress nodulation in a HAR1-dependent manner. Here, we identified PLENTY as a gene responsible for the previously isolated hypernodulation mutant plenty. PLENTY encoded a hydroxyproline O-arabinosyltransferase orthologous to ROOT DETERMINED NODULATION1 in Medicago truncatula. PLENTY was localized to the Golgi, and an in vitro analysis of the recombinant protein demonstrated its arabinosylation activity, indicating that CLE-RS1/2/3 may be substrates for PLENTY. The constitutive expression experiments showed that CLE-RS3 was the major candidate substrate for PLENTY, suggesting the substrate preference of PLENTY for individual CLE-RS peptides. Furthermore, a genetic analysis of the plenty har1 double mutant indicated the existence of another PLENTY-dependent and HAR1-independent pathway negatively regulating nodulation.


Asunto(s)
Lotus/enzimología , Pentosiltransferasa/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Aparato de Golgi/enzimología , Lotus/genética , Lotus/microbiología , Mesorhizobium/fisiología , Pentosiltransferasa/genética , Fenotipo , Simbiosis
10.
Dev Cell ; 48(1): 64-75.e5, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30581155

RESUMEN

In plants, the position of lateral roots (LRs) depends on initiation sites induced by auxin. The domain of high auxin response responsible for LR initiation stretches over several cells, but only a pair of pericycle cells (LR founder cells) will develop into LRs. In this work, we identified a signaling cascade controlling LR formation through lateral inhibition. It comprises a peptide hormone TARGET OF LBD SIXTEEN 2 (TOLS2), its receptor RLK7, and a downstream transcription factor PUCHI. TOLS2 is expressed at the LR founder cells and inhibits LR initiation. Time-lapse imaging of auxin-responsive DR5:LUCIFERASE reporter expression revealed that occasionally two pairs of LR founder cells are specified in close proximity even in wild-type and that one of them exists only transiently and disappears in an RLK7-dependent manner. We propose that the selection of LR founder cells by the peptide hormone-receptor cascade ensures proper LR spacing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Raíces de Plantas/metabolismo , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Ácidos Indolacéticos/metabolismo , Organogénesis de las Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo
11.
Methods Mol Biol ; 1863: 155-164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30324597

RESUMEN

The formation of longitudinal zonation patterns is important for normal root development and is regulated by the transcription factor PLETHORA (PLT). PLT proteins form a concentration gradient, and PLT protein levels determine root zonation. A peptide hormone root meristem growth factor (RGF) and its receptors (RGFRs) act as key regulators of root development by regulating the PLT protein expression pattern. Here, we describe a method for monitoring PLT protein gradient patterns in Arabidopsis with exogenous RGF treatment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hormonas Peptídicas/farmacología , Péptidos/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Péptidos/genética , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal , Factores de Transcripción/análisis
12.
Nat Plants ; 4(9): 669-676, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30082766

RESUMEN

Pectin is one of the three key cell wall polysaccharides in land plants and consists of three major structural domains: homogalacturonan, rhamnogalacturonan I (RG-I) and RG-II. Although the glycosyltransferase required for the synthesis of the homogalacturonan and RG-II backbone was identified a decade ago, those for the synthesis of the RG-I backbone, which consists of the repeating disaccharide unit [→2)-α-L-Rha-(1 → 4)-α-D-GalUA-(1→], have remained unknown. Here, we report the identification and characterization of Arabidopsis RG-I:rhamnosyltransferases (RRTs), which transfer the rhamnose residue from UDP-ß-L-rhamnose to RG-I oligosaccharides. RRT1, which is one of the four Arabidopsis RRTs, is a single-spanning transmembrane protein, localized to the Golgi apparatus. RRT1 was highly expressed during formation of the seed coat mucilage, which is a specialized cell wall with abundant RG-I. Loss-of-function mutation in RRT1 caused a reduction in the level of RG-I in the seed coat mucilage. The RRTs belong to a novel glycosyltransferase family, now designated GT106. This is a large plant-specific family, and glycosyltransferases in this family seem to have plant-specific roles, such as biosynthesis of plant cell wall polysaccharides.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glicosiltransferasas/metabolismo , Pectinas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Pared Celular/metabolismo , Glicosiltransferasas/fisiología , Ramnosa/metabolismo , Transcriptoma
13.
Artículo en Inglés | MEDLINE | ID: mdl-29434080

RESUMEN

The identification of hormones and their receptors in multicellular organisms is one of the most exciting research areas and has lead to breakthroughs in understanding how their growth and development are regulated. In particular, peptide hormones offer advantages as cell-to-cell signals in that they can be synthesized rapidly and have the greatest diversity in their structure and function. Peptides often undergo post-translational modifications and proteolytic processing to generate small oligopeptide hormones. In plants, such small post-translationally modified peptides constitute the largest group of peptide hormones. We initially explored this type of peptide hormone using bioassay-guided fractionation and later by in silico gene screening coupled with biochemical peptide detection, which led to the identification of four types of novel peptide hormones in plants. We also identified specific receptors for these peptides and transferases required for their post-translational modification. This review summarizes how we discovered these peptide hormone-receptor pairs and post-translational modification enzymes, and how these molecules function in plant growth, development and environmental adaptation.


Asunto(s)
Hormonas Peptídicas/química , Proteínas de Plantas/química , Plantas/química , Receptores de Péptidos/química , Comunicación Celular , Simulación por Computador , Enzimas/química , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal
14.
Methods Mol Biol ; 1621: 29-35, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28567640

RESUMEN

Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Expresión Génica , Nicotiana/genética , Células Vegetales/enzimología , Proteínas Serina-Treonina Quinasas/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/biosíntesis , Azidas/química , Comunicación Celular , Membrana Celular/química , Membrana Celular/enzimología , Electroforesis en Gel de Poliacrilamida/métodos , Colorantes Fluorescentes/química , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Compuestos Heterocíclicos con 3 Anillos/química , Ligandos , Microsomas/química , Microsomas/enzimología , Unión Proteica , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Rodaminas , Salicilatos/química , Transducción de Señal , Coloración y Etiquetado/métodos , Nicotiana/citología , Nicotiana/enzimología , Transformación Genética
15.
Methods Mol Biol ; 1621: 59-68, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28567643

RESUMEN

Defining the ligand-binding activity of receptors is important because the binding of ligands is the initial reaction in secreted ligand-dependent cell-to-cell communication. Photoaffinity labeling is one of the most efficient biochemical techniques for detecting direct ligand-receptor interactions. Here, we describe photoaffinity labeling to visualize the direct interaction between peptide ligands and their receptors by using photoactivatable and radioactive peptide ligand derivatives.


Asunto(s)
Proteínas de Arabidopsis/aislamiento & purificación , Azidas/química , Péptidos/aislamiento & purificación , Etiquetas de Fotoafinidad/química , Salicilatos/química , Coloración y Etiquetado/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Cromatografía Líquida de Alta Presión/métodos , Fluorenos/química , Expresión Génica , Radioisótopos de Yodo , Ligandos , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo
16.
Nat Plants ; 3: 17029, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28319056

RESUMEN

Plants uptake nitrogen (N) from the soil mainly in the form of nitrate. However, nitrate is often distributed heterogeneously in natural soil. Plants, therefore, have a systemic long-distance signalling mechanism by which N starvation on one side of the root leads to a compensatory N uptake on the other N-rich side1,2. This systemic N acquisition response is triggered by a root-to-shoot mobile peptide hormone, C-TERMINALLY ENCODED PEPTIDE (CEP), originating from the N-starved roots3,4, but the molecular nature of the descending shoot-to-root signal remains elusive. Here, we show that phloem-specific polypeptides that are induced in leaves upon perception of root-derived CEP act as descending long-distance mobile signals translocated to each root. These shoot-derived polypeptides, which we named CEP DOWNSTREAM 1 (CEPD1) and CEPD2, upregulate the expression of the nitrate transporter gene NRT2.1 in roots specifically when nitrate is present in the rhizosphere. Arabidopsis plants deficient in this pathway show impaired systemic N acquisition response accompanied with N-deficiency symptoms. These fundamental mechanistic insights should provide a conceptual framework for understanding systemic nutrient acquisition responses in plants.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glutarredoxinas/genética , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glutarredoxinas/metabolismo , Regulación hacia Arriba
17.
Nat Commun ; 8: 14318, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165456

RESUMEN

Evolution often diversifies a peptide hormone family into multiple subfamilies, which exert distinct activities by exclusive interaction with specific receptors. Here we show that systematic swapping of pre-existing variation in a subfamily of plant CLE peptide hormones leads to a synthetic bifunctional peptide that exerts activities beyond the original subfamily by interacting with multiple receptors. This approach provides new insights into the complexity and specificity of peptide signalling.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Hormonas Peptídicas/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Células Madre/fisiología , Secuencia de Aminoácidos , Arabidopsis/citología , Proteínas de Arabidopsis/síntesis química , Biodiversidad , Evolución Molecular , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Hormonas Peptídicas/síntesis química , Reguladores del Crecimiento de las Plantas/síntesis química , Plantas Modificadas Genéticamente , Células Madre/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato/fisiología
18.
Science ; 355(6322): 284-286, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28104889

RESUMEN

Plants achieve mineral ion homeostasis by means of a hydrophobic barrier on endodermal cells called the Casparian strip, which restricts lateral diffusion of ions between the root vascular bundles and the soil. We identified a family of sulfated peptides required for contiguous Casparian strip formation in Arabidopsis roots. These peptide hormones, which we named Casparian strip integrity factor 1 (CIF1) and CIF2, are expressed in the root stele and specifically bind the endodermis-expressed leucine-rich repeat receptor kinase GASSHO1 (GSO1)/SCHENGEN3 and its homolog, GSO2. A mutant devoid of CIF peptides is defective in ion homeostasis in the xylem. CIF genes are environmentally responsive. Casparian strip regulation is not merely a passive process driven by root developmental cues; it also serves as an active strategy to cope with adverse soil conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hormonas Peptídicas/metabolismo , Raíces de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Difusión , Genes de Plantas , Homeostasis , Mutación , Hormonas Peptídicas/genética , Regiones Promotoras Genéticas , Xilema/metabolismo
19.
Curr Opin Plant Biol ; 34: 35-40, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27552346

RESUMEN

Organ-to-organ communication is indispensable for higher organisms to maintain homeostasis over their entire life. Recent findings have uncovered that plants, like animals, mediate organ-to-organ communication by long-distance signaling through the vascular system. In particular, xylem-mobile secreted peptides have attracted much attention as root-to-shoot long-distance signaling molecules in response to fluctuating environmental nutrient status. Several leguminous CLE peptides induced by rhizobial inoculation act as 'satiety' signals in long-distance negative feedback of nodule formation. By contrast, Arabidopsis CEP family peptides induced by local nitrogen (N)-starvation behave as systemic 'hunger' signals to promote compensatory N acquisition in other parts of the roots. Xylem sap peptidomics also implies the presence of still uncharacterized long-distance signaling peptides. This review highlights the current understanding of and new insights into the mechanisms and functions of root-to-shoot long-distance peptide signaling during environmental responses.


Asunto(s)
Péptidos/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Homeostasis , Transducción de Señal/fisiología , Xilema/metabolismo
20.
Proc Natl Acad Sci U S A ; 113(32): 8969-74, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27466405

RESUMEN

Domestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes. In a previous report, we revealed that at least three loci regulate awn development in rice; however, the molecular mechanism underlying awnlessness remains unknown. Here we isolate and characterize a previously unidentified EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family member named REGULATOR OF AWN ELONGATION 2 (RAE2) and identify one of its requisite processing enzymes, SUBTILISIN-LIKE PROTEASE 1 (SLP1). The RAE2 precursor is specifically cleaved by SLP1 in the rice spikelet, where the mature RAE2 peptide subsequently induces awn elongation. Analysis of RAE2 sequence diversity identified a highly variable GC-rich region harboring multiple independent mutations underlying protein-length variation that disrupt the function of the RAE2 protein and condition the awnless phenotype in Asian rice. Cultivated African rice, on the other hand, retained the functional RAE2 allele despite its awnless phenotype. Our findings illuminate the molecular function of RAE2 in awn development and shed light on the independent domestication histories of Asian and African cultivated rice.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Alelos , Modelos Moleculares , Oryza/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...