Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687787

RESUMEN

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Asunto(s)
Ciervos , Flavivirus , Metagenómica , Garrapatas , Animales , Metagenómica/métodos , Japón/epidemiología , Ciervos/virología , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/clasificación , Garrapatas/virología , Filogenia , Viroma/genética , Virión/genética , Sus scrofa/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estudios Seroepidemiológicos , Genoma Viral
2.
PLoS Pathog ; 20(3): e1012091, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38478584

RESUMEN

No antiviral drugs currently are available for treatment of infection by hepatitis A virus (HAV), a causative agent of acute hepatitis, a potentially life-threatening disease. Chemical screening of a small-compound library using nanoluciferase-expressing HAV identified loxapine succinate, a selective dopamine receptor D2 antagonist, as a potent inhibitor of HAV propagation in vitro. Loxapine succinate did not inhibit viral entry nor internal ribosome entry site (IRES)-dependent translation, but exhibited strong inhibition of viral RNA replication. Blind passage of HAV in the presence of loxapine succinate resulted in the accumulation of viruses containing mutations in the 2C-encoding region, which contributed to resistance to loxapine succinate. Analysis of molecular dynamics simulations of the interaction between 2C and loxapine suggested that loxapine binds to the N-terminal region of 2C, and that resistant mutations impede these interactions. We further demonstrated that administration of loxapine succinate to HAV-infected Ifnar1-/- mice (which lack the type I interferon receptor) results in decreases in the levels of fecal HAV RNA and of intrahepatic HAV RNA at an early stage of infection. These findings suggest that HAV protein 2C is a potential target for antivirals, and provide novel insights into the development of drugs for the treatment of hepatitis A.


Asunto(s)
Virus de la Hepatitis A , Loxapina , Animales , Ratones , Virus de la Hepatitis A/genética , Virus de la Hepatitis A/metabolismo , Biosíntesis de Proteínas , Replicación Viral/genética , ARN/metabolismo , Proteínas Virales/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
3.
Diagnostics (Basel) ; 14(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337826

RESUMEN

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by reactivation of dormant JC polyomavirus (JCPyV). PML was mainly observed in immunocompromised individuals, such as HIV-positive patients, autoimmune disease patients, and cancer patients. Given that the presence of anti-JCPyV antibodies in serum is a risk indicator for PML development, it is essential to monitor anti-JCPyV antibody levels. In the present study, we established reporter-based single-infection neutralization assays for JCPyV and the genetically similar BK polyoma virus (BKPyV). We then confirmed the lack of cross-reactivity between the two viruses using test sera obtained from mice immunized with plasmids encoding the JCPyV or BKPyV capsid. Next, we compared neutralization antibody titers in sera from healthy donors, patients with multiple sclerosis (MS), and HIV-positive patients using an in-house enzyme-linked immunosorbent assay (ELISA) with JCPyV-like particles (virus-like particles; VLPs). A positive correlation was demonstrated between the neutralization titer (75% infectious concentration; IC75) against JCPyV and the antibody titer obtained by VLP-based JCPyV ELISA. This assay system may be applied to detect antibodies against other PyVs by generation of pseudoviruses using the respective capsid expression plasmids, and is expected to contribute to the surveillance of PyV as well as basic research on these viruses.

4.
Commun Biol ; 7(1): 233, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409320

RESUMEN

Glycogen serves as a metabolic sink in cyanobacteria. Glycogen deficiency causes the extracellular release of distinctive metabolites such as pyruvate and 2-oxoglutarate upon nitrogen depletion; however, the mechanism has not been fully elucidated. This study aimed to elucidate the mechanism of carbon partitioning in glycogen-deficient cyanobacteria. Extracellular and intracellular metabolites in a glycogen-deficient ΔglgC mutant of Synechococcus elongatus PCC 7942 were comprehensively analyzed. In the presence of a nitrogen source, the ΔglgC mutant released extracellular glutamate rather than pyruvate and 2-oxoglutarate, whereas its intracellular glutamate level was lower than that in the wild-type strain. The de novo synthesis of glutamate increased in the ΔglgC mutant, suggesting that glycogen deficiency enhanced carbon partitioning into glutamate and extracellular excretion through an unidentified transport system. This study proposes a model in which glutamate serves as the prime extracellular metabolic sink alternative to glycogen when nitrogen is available.


Asunto(s)
Carbono , Glucógeno , Carbono/metabolismo , Glucógeno/metabolismo , Fotosíntesis , Ácido Glutámico/metabolismo , Ácidos Cetoglutáricos/metabolismo , Nitrógeno/metabolismo , Piruvatos
5.
Int J Infect Dis ; 139: 59-68, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029834

RESUMEN

OBJECTIVE: The invasion of dengue virus (DENV)-2 Cosmopolitan genotype into the Philippines, where the Asian II genotype previously circulated challenges the principle of dengue serotype-specific immunity. Assessment of antibodies in this population may provide a mechanistic basis for how new genotypes emerge in dengue-endemic areas. METHODS: We evaluated the neutralizing antibody (nAb) and antibody-dependent enhancement (ADE) responses against the two genotypes using archived serum samples collected from 333 patients with confirmed dengue in Metro Manila, Philippines, before, during, and after the introduction of the Cosmopolitan genotype. We quantified nAb titers in baby hamster kidney (BHK-21) cells with or without the Fcγ receptor IIA (FcγRIIA) to detect the capacity of virus-antibody complexes to neutralize or enhance DENV. RESULTS: The nAb potency of the archived serum samples against the two genotypes was greatly affected by the presence of FcγRIIA. We found significant differences in nAb titers between the two genotypes in BHK-21 cells with FcγRIIA (P <0.0001). The archived serum samples were incapable of fully neutralizing the Cosmopolitan genotype, but instead strongly promoted its ADE compared to the Asian II genotype (P <0.0001). CONCLUSION: These results reinforce the role of pre-existing immunity in driving genotype shifts. Our finding that specific genotypes exhibit differing susceptibilities to ADE by cross-reactive antibodies may have implications for dengue vaccine development.


Asunto(s)
Virus del Dengue , Dengue , Animales , Cricetinae , Humanos , Anticuerpos Antivirales , Serogrupo , Filipinas , Estudios Retrospectivos , Anticuerpos Neutralizantes , Genotipo
6.
Commun Biol ; 6(1): 1285, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145988

RESUMEN

The cyanobacterium Synechococcus elongatus PCC 7942 accumulates alarmone guanosine tetraphosphate (ppGpp) under stress conditions, such as darkness. A previous study observed that artificial ppGpp accumulation under photosynthetic conditions led to the downregulation of genes involved in the nitrogen assimilation system, which is activated by the global nitrogen regulator NtcA, suggesting that ppGpp regulates NtcA activity. However, the details of this mechanism have not been elucidated. Here, we investigate the metabolic responses associated with ppGpp accumulation by heterologous expression of the ppGpp synthetase RelQ. The pool size of 2-oxoglutarate (2-OG), which activates NtcA, is significantly decreased upon ppGpp accumulation. De novo 13C-labeled CO2 assimilation into the Calvin-Benson-Bassham cycle and glycolytic intermediates continues irrespective of ppGpp accumulation, whereas the labeling of 2-OG is significantly decreased under ppGpp accumulation. The low 2-OG levels in the RelQ overexpression cells could be because of the inhibition of metabolic enzymes, including aconitase, which are responsible for 2-OG biosynthesis. We propose a metabolic rearrangement by ppGpp accumulation, which negatively regulates 2-OG levels to maintain carbon and nitrogen balance.


Asunto(s)
Guanosina Tetrafosfato , Ácidos Cetoglutáricos , Ácidos Cetoglutáricos/metabolismo , Nitrógeno/metabolismo , Regulón , Homeostasis
7.
Antiviral Res ; 220: 105756, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992764

RESUMEN

New antiviral agents are needed for the treatment of hepatitis B virus (HBV) infection because currently available drugs do not completely eradicate chronic HBV in patients. Phosphorylation dynamics of the HBV core protein (HBc) regulate several processes in the HBV life cycle, including nucleocapsid formation, cell trafficking, and virus uncoating after entry. In this study, the SRPK inhibitors SPHINX31, SRPIN340, and SRPKIN-1 showed concentration-dependent anti-HBV activity. Detailed analysis of the effects of SRPKIN-1, which exhibited the strongest inhibitory activity, on the HBV replication process showed that it inhibits the formation of infectious particles by inhibiting pregenomic RNA packaging into capsids and nucleocapsid envelopment. Mass spectrometry analysis combined with cell-free translation system experiments revealed that hyperphosphorylation of the C-terminal domain of HBc is inhibited by SRPKIN-1. Further, SRPKIN-1 exhibited concentration-dependent inhibition of HBV infection not only in HepG2-hNTCP-C4 cells but also in fresh human hepatocytes (PXB cells) and in the single-round infection system. Treatment with SRPKIN-1 at the time of infection reduced the nuclease sensitivity of HBV DNA in the nuclear fraction. These results suggest that SRPKIN-1 has the potential to not only inhibit the HBV particle formation process but also impair the early stages of viral infection.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Replicación Viral , Células Hep G2 , Hepatitis B/metabolismo , Virión/metabolismo , ADN Viral/genética
8.
Sci Rep ; 13(1): 17819, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857669

RESUMEN

Macrophages play an important role as effector cells in innate immune system. Meanwhile, macrophages activated in a pro-inflammatory direction alter intracellular metabolism and damage intact tissues by increasing reactive oxygen species (ROS). Electrical stimulation (ES), a predominant physical agent to control metabolism in cells and tissues, has been reported to exert anti-inflammatory effect on immune cells. However, the mechanism underlying the anti-inflammatory effects by ES is unknown. This study aimed to investigate the effect of ES on metabolism in glycolytic-tricarboxylic acid cycle (TCA) cycle and inflammatory responses in macrophages. ES was performed on bone marrow-derived macrophages and followed by a stimulation with LPS. The inflammatory cytokine expression levels were analyzed by real-time polymerase chain reaction and ELISA. ROS production was analyzed by CellRox Green Reagent and metabolites by capillary electrophoresis-mass spectrometry. As a result, ES significantly reduced proinflammatory cytokine expression levels and ROS generation compared to the LPS group and increased glucose-1-phosphate, a metabolite of glycogen. ES also increased intermediate metabolites of the pentose phosphate pathway (PPP); ribulose-5-phosphate, rebose-5 phosphate, and nicotinamide adenine dinucleotide phosphate, a key factor of cellular antioxidation systems, as well as α-Ketoglutarate, an anti-oxidative metabolite in the TCA cycle. Our findings imply that ES enhanced NADPH production with enhancement of PPP, and also decreased oxidative stress and inflammatory responses in macrophages.


Asunto(s)
Lipopolisacáridos , Vía de Pentosa Fosfato , Especies Reactivas de Oxígeno/metabolismo , NADP/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Antiinflamatorios/metabolismo , Estimulación Eléctrica , Fosfatos/metabolismo
9.
Plant Cell Physiol ; 64(12): 1563-1575, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37875012

RESUMEN

Xylem vessel cell differentiation is characterized by the deposition of a secondary cell wall (SCW) containing cellulose, hemicellulose and lignin. VASCULAR-RELATED NAC-DOMAIN7 (VND7), a plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factor, is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). Previous metabolome analysis using the VND7-inducible system in tobacco BY-2 cells successfully revealed significant quantitative changes in primary metabolites during xylem vessel cell differentiation. However, the flow of primary metabolites is not yet well understood. Here, we performed a metabolomic analysis of VND7-inducible Arabidopsis T87 suspension cells. Capillary electrophoresis-time-of-flight mass spectrometry quantified 57 metabolites, and subsequent data analysis highlighted active changes in the levels of UDP-glucose and phenylalanine, which are building blocks of cellulose and lignin, respectively. In a metabolic flow analysis using stable carbon 13 (13C) isotope, the 13C-labeling ratio specifically increased in 3-phosphoglycerate after 12 h of VND7 induction, followed by an increase in shikimate after 24 h of induction, while the inflow of 13C into lactate from pyruvate was significantly inhibited, indicating an active shift of carbon flow from glycolysis to the shikimate pathway during xylem vessel cell differentiation. In support of this notion, most glycolytic genes involved in the downstream of glyceraldehyde 3-phosphate were downregulated following the induction of xylem vessel cell differentiation, whereas genes for the shikimate pathway and phenylalanine biosynthesis were upregulated. These findings provide evidence for the active shift of carbon flow from primary metabolic pathways to the SCW polymer biosynthetic pathway at specific points during xylem vessel cell differentiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Metabolismo Secundario , Carbono/metabolismo , Ácido Shikímico/metabolismo , Xilema/metabolismo , Celulosa/metabolismo , Diferenciación Celular , Fenilalanina/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Liver Int ; 43(8): 1677-1690, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37312620

RESUMEN

BACKGROUND AND AIMS: The future development of hepatocellular carcinoma (HCC) in patients after sustained virologic response (SVR) is an important issue. The purposes of this study were to investigate pathological alterations in organelle of the liver of SVR patients and to characterize organelle abnormalities that may be related to carcinogenesis after SVR. METHODS: The ultrastructure of liver biopsy specimens from patients with chronic hepatitis C (CHC) and SVR were compared to cell and mouse models and assessed semi-quantitatively using transmission electron microscopy. RESULTS: Hepatocytes in patients with CHC showed abnormalities in the nucleus, mitochondria, endoplasmic reticulum, lipid droplet, and pericellular fibrosis, comparable to those seen in hepatitis C virus (HCV)-infected mice and cells. DAA treatment significantly reduced organelle abnormalities such as the nucleus, mitochondria, and lipid droplet in the hepatocytes of patients and mice after SVR, and cured cells, but it did not change dilated/degranulated endoplasmic reticulum and pericellular fibrosis in patients and mice after SVR. Further, samples from patients with a post-SVR period of >1 year had significantly larger numbers of abnormalities in the mitochondria and endoplasmic reticulum than those of <1 year. A possible cause of organelle abnormalities in patients after SVR could be oxidative stress of the endoplasmic reticulum and mitochondria associated with abnormalities of the vascular system due to fibrosis. Interestingly, abnormal endoplasmic reticulum was associated with patients with HCC for >1 year after SVR. CONCLUSIONS: These results indicate that patients with SVR exhibit a persistent disease state and require long-term follow-up to detect early signs of carcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C Crónica , Hepatitis C , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/patología , Antivirales/uso terapéutico , Neoplasias Hepáticas/patología , Hepacivirus , Hepatitis C/tratamiento farmacológico , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/tratamiento farmacológico , Respuesta Virológica Sostenida , Cirrosis Hepática/complicaciones , Orgánulos/patología , Carcinogénesis/patología
11.
Microb Cell Fact ; 22(1): 75, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081440

RESUMEN

BACKGROUND: Coenzyme A (CoA) is a carrier of acyl groups. This cofactor is synthesized from pantothenic acid in five steps. The phosphorylation of pantothenate is catalyzed by pantothenate kinase (CoaA), which is a key step in the CoA biosynthetic pathway. To determine whether the enhancement of the CoA biosynthetic pathway is effective for producing useful substances, the effect of elevated acetyl-CoA levels resulting from the introduction of the exogenous coaA gene on poly(3-hydroxybutyrate) [P(3HB)] synthesis was determined in Escherichia coli, which express the genes necessary for cyanobacterial polyhydroxyalkanoate synthesis (phaABEC). RESULTS: E. coli containing the coaA gene in addition to the pha genes accumulated more P(3HB) compared with the transformant containing the pha genes alone. P(3HB) production was enhanced by precursor addition, with P(3HB) content increasing from 18.4% (w/w) to 29.0% in the presence of 0.5 mM pantothenate and 16.3%-28.2% by adding 0.5 mM ß-alanine. Strains expressing the exogenous coaA in the presence of precursors contained acetyl-CoA in excess of 1 nmol/mg of dry cell wt, which promoted the reaction toward P(3HB) formation. The amount of acetate exported into the medium was three times lower in the cells carrying exogenous coaA and pha genes than in the cells carrying pha genes alone. This was attributed to significantly enlarging the intracellular pool size of CoA, which is the recipient of acetic acid and is advantageous for microbial production of value-added materials. CONCLUSIONS: Enhancing the CoA biosynthetic pathway with exogenous CoaA was effective at increasing P(3HB) production. Supplementing the medium with pantothenate facilitated the accumulation of P(3HB). ß-Alanine was able to replace the efficacy of adding pantothenate.


Asunto(s)
Escherichia coli , Ácido Pantoténico , Ácido 3-Hidroxibutírico , Acetilcoenzima A/metabolismo , Escherichia coli/metabolismo , Ácido Pantoténico/metabolismo , Ácido Acético/metabolismo , Poliésteres/metabolismo
12.
Front Immunol ; 14: 1099799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936950

RESUMEN

Introduction: Macrophages play an important role in the innate immunity. While macrophage inflammation is necessary for biological defense, it must be appropriately controlled. Extracellular vesicles (EVs) are small vesicles released from all types of cells and play a central role in intercellular communication. Skeletal muscle has been suggested to release anti-inflammatory factors, but the effect of myotube-derived EVs on macrophages is unknown. As an anti-inflammatory mechanism of macrophages, the immune responsive gene 1 (IRG1)-itaconate pathway is essential. In this study, we show that skeletal muscle-derived EVs suppress macrophage inflammatory responses, upregulating the IRG1-itaconate pathway. Methods: C2C12 myoblasts were differentiated into myotubes and EVs were extracted by ultracentrifugation. Skeletal myotube-derived EVs were administered to mouse bone marrow-derived macrophages, then lipopolysaccharide (LPS) stimulation was performed and inflammatory cytokine expression was measured by RT-qPCR. Metabolite abundance in macrophages after addition of EVs was measured by CE/MS, and IRG1 expression was measured by RT-PCR. Furthermore, RNA-seq analysis was performed on macrophages after EV treatment. Results: EVs attenuated the expression of LPS-induced pro-inflammatory factors in macrophages. Itaconate abundance and IRG1 expression were significantly increased in the EV-treated group. RNA-seq analysis revealed activation of the PI3K-Akt and JAK-STAT pathways in macrophages after EV treatment. The most abundant miRNA in myotube EVs was miR-206-3p, followed by miR-378a-3p, miR-30d-5p, and miR-21a-5p. Discussion: Skeletal myotube EVs are supposed to increase the production of itaconate via upregulation of IRG1 expression and exhibited an anti-inflammatory effect in macrophages. This anti-inflammatory effect was suggested to involve the PI3K-Akt and JAK-STAT pathways. The miRNA profiles within EVs implied that miR-206-3p, miR-378a-3p, miR-30d-5p, and miR-21a-5p may be responsible for the anti-inflammatory effects of the EVs. In summary, in this study we showed that myotube-derived EVs prevent macrophage inflammatory responses by activating the IRG1-itaconate pathway.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Ratones , Lipopolisacáridos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Macrófagos , MicroARNs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Vesículas Extracelulares/metabolismo
13.
Virus Res ; 323: 199014, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36511290

RESUMEN

Hepatitis B virus (HBV) infection is a major public health problem. The sodium taurocholate cotransporting polypeptide (NTCP) has been identified as an essential HBV receptor. Human hepatocytes are infected with HBV via binding between the preS1 region of the HBV large envelope protein and the NTCP. However, the role of preS2 in HBV entry is not well understood. In this study, we induced anti-preS2 serum in mice by DNA immunization, and showed that the resulting antiserum neutralized HBV infectivity. Competition assays using overlapping peptides suggested that the neutralizing epitope is located in the N-terminal region of preS2. In addition, monoclonal antibodies targeting the N-terminal region of preS2 neutralized HBV infectivity, indicating that these domains are critical epitopes for viral neutralization. These findings provide new insights into the HBV entry machinery while suggesting a novel modality for the prevention and treatment of HBV infection.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Ratones , Animales , Virus de la Hepatitis B/genética , Epítopos , Antígenos de Superficie de la Hepatitis B/genética , Proteínas del Envoltorio Viral , Internalización del Virus
14.
Plant Physiol ; 191(4): 2400-2413, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574371

RESUMEN

Photosynthesis must maintain stability and robustness throughout fluctuating natural environments. In cyanobacteria, dark-to-light transition leads to drastic metabolic changes from dark respiratory metabolism to CO2 fixation through the Calvin-Benson-Bassham (CBB) cycle using energy and redox equivalents provided by photosynthetic electron transfer. Previous studies have shown that catabolic metabolism supports the smooth transition into CBB cycle metabolism. However, metabolic mechanisms for robust initiation of photosynthesis are poorly understood due to lack of dynamic metabolic characterizations of dark-to-light transitions. Here, we show rapid dynamic changes (on a time scale of seconds) in absolute metabolite concentrations and 13C tracer incorporation after strong or weak light irradiation in the cyanobacterium Synechocystis sp. PCC 6803. Integration of this data enabled estimation of time-resolved nonstationary metabolic flux underlying CBB cycle activation. This dynamic metabolic analysis indicated that downstream glycolytic intermediates, including phosphoglycerate and phosphoenolpyruvate, accumulate under dark conditions as major substrates for initial CO2 fixation. Compared with wild-type Synechocystis, significant decreases in the initial oxygen evolution rate were observed in 12 h dark preincubated mutants deficient in glycogen degradation or oxidative pentose phosphate pathways. Accordingly, the degree of decrease in the initial oxygen evolution rate was proportional to the accumulated pool size of glycolytic intermediates. These observations indicate that the accumulation of glycolytic intermediates is essential for efficient metabolism switching under fluctuating light environments.


Asunto(s)
Dióxido de Carbono , Synechocystis , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Transporte de Electrón , Synechocystis/metabolismo , Oxígeno/metabolismo
15.
J Virol Methods ; 311: 114641, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328082

RESUMEN

Antibody-dependent enhancement (ADE) is one of the pathogenic mechanisms related to disease severity in dengue virus infection. Conventional assays for detecting ADE activity usually require several days. In this study, we established a rapid assay system to evaluate ADE activity in dengue-seropositive samples using single round infectious particles (SRIPs). Human Fc-gamma receptor-bearing cells (K562 and Mylc cells) were infected with SRIP antigen in the presence of human serum samples to measure ADE activity. Two assay protocols were introduced: (i) rapid assay with 5 h of incubation, and (ii) semi-rapid assay with 24 h of incubation. The rapid assay requires a large quantity of SRIP antigen and gives results in half a day. Although the semi-rapid assay requires slightly more than a day, it can be performed using only a small amount of SRIP. Interestingly, the range of the number of Mylc cells required for the semi-rapid assay was wider than that of K562 cells. Significant correlations were observed between the rapid and semi-rapid assays for both cell types. Although it is difficult to judge which protocol best reflects the current immune status in vivo, both assays could rapidly provide valuable information regarding the risk assessment for severe diseases.


Asunto(s)
Virus del Dengue , Dengue , Virosis , Humanos , Acrecentamiento Dependiente de Anticuerpo , Anticuerpos Antivirales
16.
Biotechnol Bioeng ; 120(2): 511-523, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36321324

RESUMEN

To realize lignocellulose-based bioeconomy, efficient conversion of xylose into valuable chemicals by microbes is necessary. Xylose oxidative pathways that oxidize xylose into xylonate can be more advantageous than conventional xylose assimilation pathways because of fewer reaction steps without loss of carbon and ATP. Moreover, commodity chemicals like 3,4-dihydroxybutyrate and 3-hydroxybutyrolactone can be produced from the intermediates of xylose oxidative pathway. However, successful implementations of xylose oxidative pathway in yeast have been hindered because of the secretion and accumulation of xylonate which is a key intermediate of the pathway, leading to low yield of target product. Here, high-yield production of 3,4-dihydroxybutyrate from xylose by engineered yeast was achieved through genetic and environmental perturbations. Specifically, 3,4-dihydroxybutyrate biosynthetic pathway was established in yeast through deletion of ADH6 and overexpression of yneI. Also, inspired by the mismatch of pH between host strain and key enzyme of XylD, alkaline fermentations (pH ≥ 7.0) were performed to minimize xylonate accumulation. Under the alkaline conditions, xylonate was re-assimilated by engineered yeast and combined product yields of 3,4-dihydroxybutyrate and 3-hydroxybutyrolactone resulted in 0.791 mol/mol-xylose, which is highest compared with previous study. These results shed light on the utility of the xylose oxidative pathway in yeast.


Asunto(s)
Saccharomyces cerevisiae , Xilosa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Ingeniería Metabólica/métodos , Fermentación
17.
J Virol ; 96(23): e0149622, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36354341

RESUMEN

Although hepatitis A virus (HAV) is associated only with acute hepatitis in humans, HAV RNA persists within the liver for months following resolution of liver inflammation and cessation of fecal virus shedding in chimpanzees and murine models of hepatitis A. Here, we confirm striking differences in the kinetics of HAV RNA clearance from liver versus serum and feces in infected Ifnar1-/- mice and investigate the nature of viral RNA persisting in the liver following normalization of serum alanine aminotransferase (ALT) levels. Fecal shedding of virus produced in hepatocytes declined >3,000-fold between its peak at day 14 and day 126, whereas intrahepatic HAV RNA declined only 32-fold by day 154. Viral RNA was identified within hepatocytes 3 to 4 months after inoculation and was associated with membranes, banding between 1.07 and 1.14 g/cm3 in isopycnic iodixanol gradients. Gradient fractions containing HAV RNA demonstrated no infectivity when inoculated into naive mice but contained neutralizing anti-HAV antibody. Depleting CD4+ or CD8+ T cells at this late point in infection had no effect on viral RNA abundance in the liver, whereas clodronate-liposome depletion of macrophages between days 110 and 120 postinoculation resulted in a striking recrudescence of fecal virus shedding and the reappearance of viral RNA in serum coupled with reductions in intra-hepatic Ifnγ, Tnfα, Ccl5, and other chemokine transcripts. Our data suggest that replication-competent HAV RNA persists for months within the liver in the presence of neutralizing antibody following resolution of acute hepatitis in Ifnar1-/- mice and that macrophages play a key role in viral control late in infection. IMPORTANCE HAV RNA persists in the liver of infected chimpanzees and interferon receptor-deficient Ifnar1-/- mice for many months after neutralizing antibodies appear, virus has been cleared from the blood, and fecal virus shedding has terminated. Here, we show this viral RNA is located within hepatocytes and that the depletion of macrophages months after the resolution of hepatic inflammation restores fecal virus shedding and circulating viral RNA. Our study identifies an important role for macrophages in virus control following resolution of acute hepatitis A in Ifnar1-/- mice and may have relevance to relapsing hepatitis A in humans.


Asunto(s)
Virus de la Hepatitis A , Hepatitis A , Macrófagos , Esparcimiento de Virus , Animales , Ratones , Linfocitos T CD8-positivos , Heces , Virus de la Hepatitis A/fisiología , Inflamación , Macrófagos/virología , Receptor de Interferón alfa y beta/genética , ARN Viral/genética , Ratones Noqueados
18.
ACS Synth Biol ; 11(12): 4054-4064, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36445137

RESUMEN

The four-carbon (C4) dicarboxylic acids, fumarate, malate, and succinate, are the most valuable targets that must be exploited for CO2-based chemical production in the move to a sustainable low-carbon future. Cyanobacteria excrete high amounts of C4 dicarboxylic acids through glycogen fermentation in a dark anoxic environment. The enhancement of metabolic flux in the reductive TCA branch in the Cyanobacterium Synechocystis sp. PCC6803 is a key issue in the C4 dicarboxylic acid production. To improve metabolic flux through the anaplerotic pathway, we have created the recombinant strain PCCK, which expresses foreign ATP-forming phosphoenolpyruvate carboxykinase (PEPck) concurrent with intrinsic phosphoenolpyruvate carboxylase (Ppc) overexpression. Expression of PEPck concurrent with Ppc led to an increase in C4 dicarboxylic acids by autofermentation. Metabolome analysis revealed that PEPck contributed to an increase in carbon flux from hexose and pentose phosphates into the TCA reductive branch. To enhance the metabolic flux in the reductive TCA branch, we examined the effect of corn-steep liquor (CSL) as a nutritional supplement on C4 dicarboxylic acid production. Surprisingly, the addition of sterilized CSL enhanced the malate production in the PCCK strain. Thereafter, the malate and fumarate excreted by the PCCK strain are converted into succinate by the CSL-settling microorganisms. Finally, high-density cultivation of cells lacking the acetate kinase gene showed the highest production of malate and fumarate (3.2 and 2.4 g/L with sterilized CSL) and succinate (5.7 g/L with non-sterile CSL) after 72 h cultivation. The present microbial community engineering is useful for succinate production by one-pot fermentation under dark anoxic conditions.


Asunto(s)
Microbiota , Synechocystis , Malatos/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Ingeniería Metabólica , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Glucógeno , Ácido Succínico/metabolismo , Ácidos Dicarboxílicos/metabolismo , Fumaratos
19.
Polymers (Basel) ; 14(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36297985

RESUMEN

Polymer- and/or protein-based nanofibers that promote stable cell adhesion have drawn increasing attention as well-defined models of the extracellular matrix. In this study, we fabricated two classes of stimulus-responsive fibers containing gelatin and supramolecular crosslinks to emulate the dynamic cellular microenvironment in vivo. Gelatin enabled cells to adhere without additional surface functionalization, while supramolecular crosslinks allowed for the reversible switching of the Young's modulus through changes in the concentration of guest molecules in culture media. The first class of nanofibers was prepared by coupling the host-guest inclusion complex to gelatin before electrospinning (pre-conjugation), while the second class of nanofibers was fabricated by coupling gelatin to polyacrylamide functionalized with host or guest moieties, followed by conjugation in the electrospinning solution (post-conjugation). In situ AFM nano-indentation demonstrated the reversible switching of the Young's modulus between 2-3 kPa and 0.2-0.3 kPa under physiological conditions by adding/removing soluble guest molecules. As the concentration of additives does not affect cell viability, the supramolecular fibers established in this study are a promising candidate for various biomedical applications, such as standardized three-dimensional culture matrices for somatic cells and the regulation of stem cell differentiation.

20.
Vaccine ; 40(42): 6004-6011, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36109279

RESUMEN

Flaviviruses are important human pathogens because of their global distribution and disease severity. The high structural similarity among flaviviruses induces cross-immunity, with individual flaviviruses exhibiting crossreactive infection-enhancing and/or -neutralizing activities against other flaviviruses. Unlike neutralizing antibodies, enhancing antibodies may increase the risk of disease severity. Vaccine-induced enhancement remains a concern in the development of flavivirus vaccines. Here, we immunized mice with DNA vaccine candidates (pcJEME, pcWNME or pcZIKME) against Japanese encephalitis virus (JEV), West Nile virus (WNV) or Zika virus (ZIKV), respectively, and investigated crossreactive neutralizing and enhancing antibody activities against seven flaviviruses. pcZIKME induced higher cross-neutralization against dengue viruses than against JEV and WNV. Moreover, pcZIKME with a single amino acid substitution (D87N) showed an increase in crossreactive neutralizing activity and a decrease in enhancing activities against other flaviviruses. A similar trend was observed in pcWNME. Engineered antigen might contribute to the development of safe and effective flavivirus vaccines.


Asunto(s)
Virus del Dengue , Virus de la Encefalitis Japonesa (Especie) , Flavivirus , Vacunas de ADN , Virus del Nilo Occidental , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Bloqueadores , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Ratones , Infección por el Virus Zika/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...