Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(1): 102124, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38328481

RESUMEN

In genome editing, it is important to avoid off-target mutations so as to reduce unexpected side effects, especially for therapeutic applications. Recently, several high-fidelity versions of SpCas9 have been developed to reduce off-target mutations. In addition to reducing off-target effects, highly efficient intended target gene correction is also essential to rescue protein functions that have been disrupted by single nucleotide polymorphisms. Homology-directed repair (HDR) corrects genes precisely using a DNA template. Our recent development of cell cycle-dependent genome editing has shown that regulation of Cas9 activation with an anti-CRISPR-Cdt1 fusion protein increases HDR efficiency and reduces off-target effects. In this study, to apply high-fidelity SpCas9 variants to cell cycle-dependent genome editing, we evaluated anti-CRISPR inhibition of high-fidelity SpCas9s. In addition, HDR efficiency of high-fidelity SpCas9s was addressed, identifying eSpCas9, SpCas9-HF1, and LZ3 Cas9 as promising candidates. Although eSpCas9 and LZ3 Cas9 showed decreased HDR efficiency in cell cycle-dependent genome editing, SpCas9-HF1 successfully achieved increased HDR efficiency and few off-target effects when co-expressed with an AcrIIA4-Cdt1 fusion.

2.
FEBS Lett ; 597(7): 985-994, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36905332

RESUMEN

Genome editing with CRISPR-Cas9, particularly for therapeutic purposes, should be accomplished via the homology-directed repair (HDR) pathway, which exhibits greater precision than other pathways. However, one of the issues to be solved is that genome editing efficiency with HDR is generally low. A Streptococcus pyogenes Cas9 (SpyCas9) fusion with human Geminin (Cas9-Gem) reportedly increases HDR efficiency slightly. In contrast, we found that regulation of SpyCas9 activity with an anti-CRISPR protein (AcrIIA4) fused to Chromatin licensing and DNA replication factor 1 (Cdt1) significantly increases HDR efficiency and reduces off-target effects. Here, another anti-CRISPR protein, AcrIIA5, was applied, and the combined use of Cas9-Gem and Anti-CRISPR+Cdt1 showed synergistic enhancement of HDR efficiency. The method may be applicable to various anti-CRISPR/CRISPR-Cas combinations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Geminina/genética , Reparación del ADN por Recombinación , Proteínas de Ciclo Celular/genética
3.
Molecules ; 26(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379243

RESUMEN

Ferulic Acid (FA) is a highly abundant phenolic phytochemical which is present in plant tissues. FA has biological effects on physiological and pathological processes due to its anti-apoptotic and anti-oxidative properties, however, the detailed mechanism(s) of function is poorly understood. We have identified FA as a molecule that inhibits apoptosis induced by hydrogen peroxide (H2O2) or actinomycin D (ActD) in rat pheochromocytoma, PC12 cell. We also found that FA reduces H2O2-induced reactive oxygen species (ROS) production in PC12 cell, thereby acting as an anti-oxidant. Then, we analyzed FA-mediated signaling responses in rat pheochromocytoma, PC12 cells using antibody arrays for phosphokinase and apoptosis related proteins. This FA signaling pathway in PC12 cells includes inactivation of pro-apoptotic proteins, SMAC/Diablo and Bad. In addition, FA attenuates the cell injury by H2O2 through the inhibition of phosphorylation of the extracellular signal-regulated kinase (ERK). Importantly, we find that FA restores expression levels of brain-derived neurotrophic factor (BDNF), a key neuroprotective effector, in H2O2-treated PC12 cells. As a possible mechanism, FA increases BDNF by regulating microRNA-10b expression following H2O2 stimulation. Taken together, FA has broad biological effects as a neuroprotective modulator to regulate the expression of phosphokinases, apoptosis-related proteins and microRNAs against oxidative stress in PC12 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Cumáricos/farmacología , Peróxido de Hidrógeno/farmacología , Sustancias Protectoras/farmacología , Neoplasias de las Glándulas Suprarrenales/tratamiento farmacológico , Neoplasias de las Glándulas Suprarrenales/metabolismo , Animales , Antioxidantes/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular Tumoral , Dactinomicina/farmacología , MicroARNs/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Feocromocitoma/tratamiento farmacológico , Feocromocitoma/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA