Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 11(1): 548, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697299

RESUMEN

An increasing body of evidence suggests that impaired synapse development and function are associated with schizophrenia; however, the underlying molecular pathophysiological mechanism of the disease remains largely unclear. We conducted a family-based study combined with molecular and cellular analysis using induced pluripotent stem cell (iPSC) technology. We generated iPSCs from patients with familial schizophrenia, differentiated these cells into neurons, and investigated the molecular and cellular phenotypes of the patient's neurons. We identified multiple altered synaptic functions, including increased glutamatergic synaptic transmission, higher synaptic density, and altered splicing of dopamine D2 receptor mRNA in iPSC-derived neurons from patients. We also identified patients' specific genetic mutations using whole-exome sequencing. Our findings support the notion that altered synaptic function may underlie the molecular and cellular pathophysiology of schizophrenia, and that multiple genetic factors cooperatively contribute to the development of schizophrenia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esquizofrenia , Diferenciación Celular , Humanos , Neuronas , Receptores de Dopamina D2/genética , Esquizofrenia/genética
2.
Mol Brain ; 14(1): 56, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726803

RESUMEN

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Oxitocina/uso terapéutico , Conducta Social , Transposasas/genética , Administración Intranasal , Animales , Trastorno del Espectro Autista/psicología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Humanos , Ratones , Mutación Missense , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxitocina/administración & dosificación , Oxitocina/farmacología , Mutación Puntual , Regiones Promotoras Genéticas , Unión Proteica , Receptores de Oxitocina/biosíntesis , Receptores de Oxitocina/genética , Receptores de Vasopresinas/biosíntesis , Receptores de Vasopresinas/genética , Transcripción Genética , Transposasas/fisiología
3.
Nat Commun ; 11(1): 859, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103003

RESUMEN

Pogo transposable element derived with ZNF domain (POGZ) has been identified as one of the most recurrently de novo mutated genes in patients with neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), intellectual disability and White-Sutton syndrome; however, the neurobiological basis behind these disorders remains unknown. Here, we show that POGZ regulates neuronal development and that ASD-related de novo mutations impair neuronal development in the developing mouse brain and induced pluripotent cell lines from an ASD patient. We also develop the first mouse model heterozygous for a de novo POGZ mutation identified in a patient with ASD, and we identify ASD-like abnormalities in the mice. Importantly, social deficits can be treated by compensatory inhibition of elevated cell excitability in the mice. Our results provide insight into how de novo mutations on high-confidence ASD genes lead to impaired mature cortical network function, which underlies the cellular pathogenesis of NDDs, including ASD.


Asunto(s)
Trastorno Autístico/genética , Predisposición Genética a la Enfermedad/genética , Malformaciones del Desarrollo Cortical/genética , Mutación , Fenotipo , Transposasas/genética , Adolescente , Animales , Conducta Animal , Encéfalo/patología , Diferenciación Celular , Línea Celular , Proliferación Celular , Femenino , Edición Génica , Técnicas de Silenciamiento del Gen , Heterocigoto , Humanos , Discapacidad Intelectual , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Neurogénesis , Neuronas/metabolismo
4.
Biochem Biophys Res Commun ; 519(3): 626-632, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31540692

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder, characterized by impaired social interaction, repetitive behavior and restricted interests. Although the molecular etiology of ASD remains largely unknown, recent studies have suggested that de novo mutations are significantly involved in the risk of ASD. We and others recently identified spontaneous de novo mutations in PKD2, a protein kinase D family member, in sporadic ASD cases. However, the biological significance of the de novo PKD2 mutations and the role of PKD2 in brain development remain unclear. Here, we performed functional analysis of PKD2 in cortical neuron development using in utero electroporation. PKD2 is highly expressed in cortical neural stem cells in the developing cortex and regulates cortical neuron development, including the neuronal differentiation of neural stem cells and migration of newborn neurons. Importantly, we determined that the ASD-associated de novo mutations impair the kinase activity of PKD2, suggesting that the de novo PKD2 mutations can be a risk factor for the disease by loss of function of PKD2. Our current findings provide novel insight into the molecular and cellular pathogenesis of ASD.


Asunto(s)
Trastorno del Espectro Autista/enzimología , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Canales Catiónicos TRPP/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Desarrollo Embrionario , Células HEK293 , Humanos , Neuronas/citología
5.
Neuropsychopharmacology ; 44(12): 2125-2135, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31216562

RESUMEN

3q29 microdeletion, a rare recurrent copy number variant (CNV), greatly confers an increased risk of psychiatric disorders, such as schizophrenia and autism spectrum disorder (ASD), as well as intellectual disability. However, disease-relevant cellular phenotypes of 3q29 deletion syndrome remain to be identified. To reveal the molecular and cellular etiology of 3q29 deletion syndrome, we generated a mouse model of human 3q29 deletion syndrome by chromosome engineering, which achieved construct validity. 3q29 deletion (Df/+) mice showed reduced body weight and brain volume and, more importantly, impaired social interaction and prepulse inhibition. Importantly, the schizophrenia-related impaired prepulse inhibition was reversed by administration of antipsychotics. These findings are reminiscent of the growth defects and neuropsychiatric behavioral phenotypes in patients with 3q29 deletion syndrome and exemplify that the mouse model achieves some part of face validity and predictive validity. Unbiased whole-brain imaging revealed that neuronal hyperactivation after a behavioral task was strikingly exaggerated in a restricted region of the cortex of Df/+ mice. We further elucidated the cellular phenotypes of neuronal hyperactivation and the reduction of parvalbumin expression in the cortex of Df/+ mice. Thus, the 3q29 mouse model provides invaluable insight into the disease-causative molecular and cellular pathology of psychiatric disorders.


Asunto(s)
Corteza Cerebral/fisiopatología , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Neuronas/fisiología , Animales , Conducta Animal , Deleción Cromosómica , Cromosomas Humanos Par 3/genética , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Modelos Animales de Enfermedad , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
6.
Schizophr Res ; 181: 75-82, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28277309

RESUMEN

Schizophrenia is a chronic psychiatric disorder with complex genetic and environmental origins. While many antipsychotics have been demonstrated as effective in the treatment of schizophrenia, a substantial number of schizophrenia patients are partially or fully unresponsive to the treatment. Clozapine is the most effective antipsychotic drug for treatment-resistant schizophrenia; however, clozapine has rare but serious side-effects. Furthermore, there is inter-individual variability in the drug response to clozapine treatment. Therefore, the identification of the molecular mechanisms underlying the action of clozapine and drug response predictors is imperative. In the present study, we focused on a pair of monozygotic twin cases with treatment-resistant schizophrenia, in which one twin responded well to clozapine treatment and the other twin did not. Using induced pluripotent stem (iPS) cell-based technology, we generated neurons from iPS cells derived from these patients and subsequently performed RNA-sequencing to compare the transcriptome profiles of the mock or clozapine-treated neurons. Although, these iPS cells similarly differentiated into neurons, several genes encoding homophilic cell adhesion molecules, such as protocadherin genes, showed differential expression patterns between these two patients. These results, which contribute to the current understanding of the molecular mechanisms of clozapine action, establish a new strategy for the use of monozygotic twin studies in schizophrenia research.


Asunto(s)
Antipsicóticos/uso terapéutico , Clozapina/uso terapéutico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Variación Biológica Poblacional , Enfermedades en Gemelos/tratamiento farmacológico , Enfermedades en Gemelos/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Persona de Mediana Edad , Transcriptoma/efectos de los fármacos , Gemelos Monocigóticos
7.
J Mol Psychiatry ; 4: 1, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27103995

RESUMEN

BACKGROUND: A spontaneous de novo mutation is a new mutation appeared in a child that neither the parent carries. Recent studies suggest that recurrent de novo loss-of-function mutations identified in patients with sporadic autism spectrum disorder (ASD) play a key role in the etiology of the disorder. POGZ is one of the most recurrently mutated genes in ASD patients. Our laboratory and other groups have recently found that POGZ has at least 18 independent de novo possible loss-of-function mutations. Despite the apparent importance, these mutations have never previously been assessed via functional analysis. METHODS: Using wild-type, the Q1042R-mutated, and R1008X-mutated POGZ, we performed DNA-binding experiments for proteins that used the CENP-B box sequence in vitro. Data were statistically analyzed by one-way ANOVA followed by Tukey-Kramer post hoc tests. RESULTS: This study reveals that ASD-associated de novo mutations (Q1042R and R1008X) in the POGZ disrupt its DNA-binding activity. CONCLUSIONS: Here, we report the first functional characterization of de novo POGZ mutations identified in sporadic ASD cases. These findings provide important insights into the cellular basis of ASD.

8.
J Hum Genet ; 61(3): 199-206, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26582266

RESUMEN

Autism spectrum disorder (ASD) is a complex group of clinically heterogeneous neurodevelopmental disorders with unclear etiology and pathogenesis. Genetic studies have identified numerous candidate genetic variants, including de novo mutated ASD-associated genes; however, the function of these de novo mutated genes remains unclear despite extensive bioinformatics resources. Accordingly, it is not easy to assign priorities to numerous candidate ASD-associated genes for further biological analysis. Here we developed a convenient system for identifying an experimental evidence-based annotation of candidate ASD-associated genes. We performed trio-based whole-exome sequencing in 30 sporadic cases of ASD and identified 37 genes with de novo single-nucleotide variations (SNVs). Among them, 5 of those 37 genes, POGZ, PLEKHA4, PCNX, PRKD2 and HERC1, have been previously reported as genes with de novo SNVs in ASD; and consultation with in silico databases showed that only HERC1 might be involved in neural function. To examine whether the identified gene products are involved in neural functions, we performed small hairpin RNA-based assays using neuroblastoma cell lines to assess neurite development. Knockdown of 8 out of the 14 examined genes significantly decreased neurite development (P<0.05, one-way analysis of variance), which was significantly higher than the number expected from gene ontology databases (P=0.010, Fisher's exact test). Our screening system may be valuable for identifying the neural functions of candidate ASD-associated genes for further analysis and a substantial portion of these genes with de novo SNVs might have roles in neuronal systems, although further detailed analysis might eliminate false positive genes from identified candidate ASD genes.


Asunto(s)
Trastorno del Espectro Autista/genética , Exoma , Neuritas , Análisis de Secuencia , Adulto , Animales , Línea Celular , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...