Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatol Commun ; 4(5): 724-738, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32363322

RESUMEN

Genome-wide association studies (GWASs) in European and East Asian populations have identified more than 40 disease-susceptibility genes in primary biliary cholangitis (PBC). The aim of this study is to computationally identify disease pathways, upstream regulators, and therapeutic targets in PBC through integrated GWAS and messenger RNA (mRNA) microarray analysis. Disease pathways and upstream regulators were analyzed with ingenuity pathway analysis in data set 1 for GWASs (1,920 patients with PBC and 1,770 controls), which included 261 annotated genes derived from 6,760 single-nucleotide polymorphisms (P < 0.00001), and data set 2 for mRNA microarray analysis of liver biopsy specimens (36 patients with PBC and 5 normal controls), which included 1,574 genes with fold change >2 versus controls (P < 0.05). Hierarchical cluster analysis and categorization of cell type-specific genes were performed for data set 2. There were 27 genes, 10 pathways, and 149 upstream regulators that overlapped between data sets 1 and 2. All 10 pathways were immune-related. The most significant common upstream regulators associated with PBC disease susceptibility identified were interferon-gamma (IFNG) and CD40 ligand (CD40L). Hierarchical cluster analysis of data set 2 revealed two distinct groups of patients with PBC by disease activity. The most significant upstream regulators associated with disease activity were IFNG and CD40L. Several molecules expressed in B cells, T cells, Kupffer cells, and natural killer-like cells were identified as potential therapeutic targets in PBC with reference to a recently reported list of cell type-specific gene expression in the liver. Conclusion: Our integrated analysis using GWAS and mRNA microarray data sets predicted that IFNG and CD40L are the central upstream regulators in both disease susceptibility and activity of PBC and identified potential downstream therapeutic targets.

2.
Sci Rep ; 9(1): 102, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643196

RESUMEN

Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identified six susceptibility loci for PBC. Here, in order to further elucidate the genetic architecture of PBC, a GWAS was performed on an additional independent sample set, then a genome-wide meta-analysis with our previous GWAS was performed based on a whole-genome single nucleotide polymorphism (SNP) imputation analysis of a total of 4,045 Japanese individuals (2,060 cases and 1,985 healthy controls). A susceptibility locus on chromosome 3q13.33 (including ARHGAP31, TMEM39A, POGLUT1, TIMMDC1, and CD80) was previously identified both in the European and Chinese populations and was replicated in the Japanese population (OR = 0.7241, P = 3.5 × 10-9). Subsequent in silico and in vitro functional analyses identified rs2293370, previously reported as the top-hit SNP in this locus in the European population, as the primary functional SNP. Moreover, e-QTL analysis indicated that the effector gene of rs2293370 was Protein O-Glucosyltransferase 1 (POGLUT1) (P = 3.4 × 10-8). This is the first study to demonstrate that POGLUT1 and not CD80 is the effector gene regulated by the primary functional SNP rs2293370, and that increased expression of POGLUT1 might be involved in the pathogenesis of PBC.


Asunto(s)
Glucosiltransferasas/genética , Cirrosis Hepática Biliar/genética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Japón , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...