Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cytotechnology ; 76(2): 247-258, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38495296

RESUMEN

While induced pluripotent stem (iPS) cells are expected to be a cell source for regenerative medicine, they also have tumorigenic properties owing to their proliferative potential. During the manufacturing of regenerative medicine products, undifferentiated iPS cells and malignant transformed cells may be mixed in the cell culture population. Therefore, it is essential to eliminate tumorigenic cells selectively. In this study, a mixed culture of normal human fetal hepatocytes (Hc cells) and human hepatocellular carcinoma cells (HuH-7 cells) was used as a cell population model to be used as regenerative medicine products, and the selective elimination of HuH-7 cells by hybrid liposomes (HL) was analyzed. HL tended to fuse and accumulate more in HuH-7 cells due to larger fluidity of plasma membrane for HuH-7 cells than that for Hc cells. In a mixed culture of Hc and HuH-7 cells, HL selectively eliminated HuH-7 cells while allowing Hc cells to remain viable. In addition, HL treatment for the mixed culture of Hc and HuH-7 cells suppressed the tumorigenicity of HuH-7 cells. Therefore, HL selectively fused and accumulated in tumorigenic cells in a mixed cell culture of normal and tumorigenic cells, and eliminated tumorigenic cells while allowing normal cells to remain viable. The results of this study suggest the potential of HL in eliminating tumorigenic cells during the manufacturing of regenerative medicine products. Thus, HL could be expected to contribute to the development of safe regenerative medical products. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00613-y.

2.
Water Res ; 235: 119909, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996750

RESUMEN

Application of poly-aluminum chloride (PACl) coagulant is a popular mode of water treatment worldwide because of the high capacity of PACl to neutralize charge. The manufacture and use of PACls with various basicities in different regions around the world suggest that the characteristics of the raw water are important determinants of the efficacy of PACl application. However, attention has not been fully paid to the effects of water quality other than the substances to be removed. In this study, two typical PACls with different basicities were used to investigate why the performance of PACls depends on the characteristics of the raw water. We focused on the concentrations of inorganic ions in the raw water. Use of high-basicity PACl (HB-PACl) with a high content of polymeric-colloidal species (Alb+Alc) resulted in very slow floc formation and little turbidity removal in raw water with low concentrations of sulfate ions. The performance of the HB-PACl was inferior to that of normal-basicity PACl (NB-PACl), although the charge-neutralization capacity of the HB-PACl was higher. Rates of floc formation were strongly correlated with the rate of aluminum precipitation by hydrolysis reaction, which was identified as an indicator for evaluating the compatibility of raw water with PACl treatment. Among the common ions in natural water, the sulfate ion had the greatest ability to hydrolyze and precipitate PACl because of its divalency and tetrahedral structure. This conclusion followed from experimental results showing similar effects for selenate and chromate ions as for sulfate ions and somewhat smaller effects for thiosulfate ions. Bicarbonate ions and natural organic matter affected PACl hydrolysis-precipitation, but chloride ions, nitrate ions, and cations had little effect on PACl hydrolysis-precipitation. Interestingly, the abilities of sulfate ions to hydrolyze HB-PACl and NB-PACl were very similar, but bicarbonate ions were less effective in hydrolyzing HB-PACl than NB-PACl, and bicarbonate ions contributed little to the hydrolysis-precipitation of HB-PACl in raw water with normal alkalinity. Therefore, sufficient coagulation with HB-PACl therefore usually requires a certain concentration of sulfate ions in water to be treated. The implication is that which anions are most influential to the hydrolysis-precipitation of PACl, and thus to PACl's coagulation ability depends on the constituents of the PACl.


Asunto(s)
Cloruros , Purificación del Agua , Bicarbonatos , Hidróxido de Aluminio/química , Aluminio/química , Sulfatos/química , Purificación del Agua/métodos , Floculación
3.
J Environ Manage ; 326(Pt A): 116738, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375426

RESUMEN

Proper selection of new contaminants to be regulated or monitored prior to implementation is an important issue for regulators and water supply utilities. Herein, we constructed and evaluated machine learning models for predicting the detectability (detection/non-detection) of pesticides in surface water as drinking water sources. Classification and regression models were constructed for Random Forest, XGBoost, and LightGBM, respectively; of these, the LightGBM classification model had the highest prediction accuracy. Furthermore, its prediction performance was superior in all aspects of Recall, Precision, and F-measure compared to the detectability index method, which is based on runoff models from previous studies. Regardless of the type of machine learning model, the number of annual measurements, sales quantity of pesticide for rice-paddy field, and water quality guideline values were the most important model features (explanatory variables). Analysis of the impact of the features suggested the presence of a threshold (or range), above which the detectability increased. In addition, if a feature (e.g., quantity of pesticide sales) acted to increase the likelihood of detection beyond a threshold value, other features also synergistically affected detectability. Proportion of false positives and negatives varied depending on the features used. The superiority of the machine learning models is their ability to represent nonlinear and complex relationships between features and pesticide detectability that cannot be represented by existing risk scoring methods.


Asunto(s)
Agua Potable , Plaguicidas , Contaminantes Químicos del Agua , Plaguicidas/análisis , Calidad del Agua , Agua Potable/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Aprendizaje Automático
4.
Water Res X ; 16: 100153, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36032788

RESUMEN

Catalytic oxidative removal of Mn2+ on activated-carbon surfaces by free chlorine was recently discovered and found to be potentially practicable for water treatment when using micrometer-sized activated carbon. Herein, we newly derived a kinetic model for trace-substance removal by catalytic reaction and applied it to the Mn2+ removal. External-film mass transfer, adsorption, and oxidation/desorption contributed similarly to the Mn2+ removal rate under actual practical conditions. The low removal rate in natural water was attributed to decreases in available adsorption sites: e.g., a 50% decrease in available sites in water with 0.26 mmol-Ca2+/L caused a 15% reduction in removal rate. Low temperature greatly reduced the removal rate by both enhancing the decrease in available sites and hindering mass transfer through increased viscosity. While adsorption sites differed 8-fold between different carbon particles, causing a 2.2-fold difference in removal rates, carbon particle size was more influential, with a >10-fold difference between 2- and 30-µm sizes.

5.
Water Res ; 208: 117872, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34837808

RESUMEN

Submerged-membrane hybrid systems (SMHSs) that combine membrane filtration with powdered activated carbon (PAC) take advantage of PAC's ability to adsorb and remove contaminants dissolved in water. However, the risk of contaminant desorption due to temporal changes in the influent concentration of the contaminant has not been thoroughly explored. In this study, we used a SMHS with conventionally-sized PAC or superfine PAC (SPAC) to remove 2-methylisoborneol (MIB), a representative micropollutant, from water containing natural organic matter (NOM), with the goal of elucidating adsorption-desorption phenomena in the SMHS. We found that 20-40% of the MIB that adsorbed on PAC and SPAC while the influent was contaminated with MIB (6 h, contamination period) desorbed to the liquid phase within 6 h from the time that the MIB-containing influent was replaced by MIB-free influent (no-contamination period). The percentage of desorption during the no-contamination period increased with increasing MIB breakthrough concentration during the contamination period. These findings indicate that the PAC/SPAC in the SMHS should be replaced while the breakthrough concentration is low, not only to keep a high removal rate but also to decrease the desorption risk. SPAC is fast in removal by adsorption, but it is also fast in release by desorption. SPAC (median diameter: 0.94 µm) showed almost the same adsorption-desorption kinetics as PAC (12.1 µm) of a double dose. A two-component branched-pore diffusion model combined with an IAST (ideal adsorbed solution theory)-Freundlich isotherm was used to describe and analyze the adsorption-desorption of MIB. The diffusivity of MIB molecules in the pores of the activated carbon particles decreased markedly in a short period of time. This decrease, which was attributed to fouling of the activated carbon in the SMHS by coagulant-treated water containing NOM, not only reduced the rate of MIB removal during the contamination period but also hindered the rate of MIB desorption during the no-contamination period and thus prevented the effluent MIB concentration from becoming high. On the other hand, coagulation did not change the concentration of NOM that competes with MIB for adsorption sites.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Cinética , Polvos , Contaminantes Químicos del Agua/análisis
6.
Chem Res Toxicol ; 34(9): 2070-2078, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34374289

RESUMEN

Drinking water quality guideline values for toxic compounds are determined based on their acceptable daily intake. The toxicological end point for determining the acceptable daily intake of most organophosphorus insecticides is inhibition of acetylcholinesterase (AChE). Although insecticides ingested with drinking water are partly metabolized by the liver before transport to the rest of the body, no current cell-independent AChE activity assay takes the effects of metabolism into account. Here, we incorporated metabolism into a cell-independent AChE activity assay and then evaluated the change in anti-AChE activity during chlorination of a solution containing the organophosphorus insecticide diazinon. The anti-AChE activities of solutions of diazinon or diazinon-oxon, the major transformation product of diazinon during chlorination, were dramatically changed by metabolism: the activity of diazinon solution was markedly increased, whereas that of diazinon-oxon solution was slightly decreased, clearly indicating the importance of incorporating metabolism into assays examining toxicity after oral ingestion. Upon chlorination, diazinon was completely transformed, in part to diazinon-oxon. Although diazinon solution without metabolism did not show anti-AChE activity before chlorination, it did after chlorination. In contrast, with metabolism, diazinon solution did show anti-AChE activity before chlorination, but chlorination gradually decreased this activity over time. The observed anti-AChE activities were attributable solely to diazinon and diazinon-oxon having been contained in the samples before metabolism, clearly suggesting that the presence not only of diazinon but also of diazinon-oxon should be monitored in drinking water. Further examination using a combination of tandem mass spectrometry and in silico site-of-metabolism analyses revealed the structure of a single metabolite that was responsible for the observed anti-AChE activity after metabolism. However, because this compound is produced via metabolism in the human body after oral ingestion of diazinon, its presence in drinking water need not be monitored and regulated.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Diazinón/toxicidad , Insecticidas/toxicidad , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Simulación por Computador , Diazinón/química , Diazinón/metabolismo , Pruebas de Enzimas , Halogenación , Humanos , Insecticidas/química , Insecticidas/metabolismo , Internet , Compuestos Organofosforados/química , Compuestos Organofosforados/metabolismo , Compuestos Organofosforados/toxicidad
8.
Water Res ; 203: 117550, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34418646

RESUMEN

One of the main purposes of drinking water treatment is to reduce turbidity originating from clay particles. Relatively little is known about the removal of other types of particles, including conventionally sized powdered activated carbon (PAC) and superfine PAC (SPAC), which are intentionally added during the treatment process; microplastic particles; and viruses. To address this knowledge gap, we conducted a preliminary investigation in full-scale water treatment plants and then studied the removal of these particles during coagulation-flocculation, sedimentation, and rapid sand filtration (CSF) in bench-scale experiments in which these particles were present together. Numbers of all target particles were greatly decreased by coagulation-flocculation and sedimentation (CS). Subsequent rapid sand filtration greatly reduced the concentrations of PAC and SPAC but not the concentrations of viruses, microplastic particles, and clay particles. Overall removal rates by CSF were 4.6 logs for PAC and SPAC, 3.5 logs for viruses, 2.9 logs for microplastics, and 2.8 logs for clay. The differences in removals were not explained by particle sizes or zeta potentials. However, for clays, PAC and SPAC, for which the particle size distributions were wide, smaller particles were less efficiently removed. The ratios of both clay to PAC and clay to SPAC particles increased greatly after rapid sand filtration because removal rates of PAC and SPAC particles were about 2 logs higher than removal rates of clay particles. The trend of greater reduction of PAC concentrations than turbidity was confirmed by measurements made in 14 full-scale water purification plants in which residual concentrations of PAC in treated water were very low, 40-200 particles/mL. Clay particles therefore accounted for most of the turbidity in sand filtrate, even though PAC was employed. The removal rate of microplastic particles was comparable to that of clays. Sufficient turbidity removal would therefore provide comparable removal of microplastics. We investigated the effect of mechanical/photochemical weathering on the removal of microplastics via CSF. Photochemical weathering caused a small increment in the removal rate of microplastics during CS but a small reduction in the removal rate of microplastics during rapid sand filtration; mechanical weathering decreased the removal rate via CS but increased the removal rate via rapid sand filtration. The changes of removal of microplastics might have been caused by changes of their zeta potential.


Asunto(s)
Virus , Purificación del Agua , Bentonita , Carbón Orgánico , Arcilla , Filtración , Floculación , Caolín , Microplásticos , Plásticos , Arena
9.
J Biosci Bioeng ; 132(2): 206-212, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33965315

RESUMEN

To avoid the risk of tumorigenesis after cell transplantation, tumorigenic stem cells should be selectively eliminated from induced pluripotent cells, embryonic stem cells, and somatic stem cells. We previously reported the presence of tumorigenic stem cells in human fetal hepatocyte-induced hepatoblasts after sodium butyrate (SB) treatment. In this study, we aimed to investigate the selective elimination of tumorigenic stem cells in human hepatoblasts using hybrid liposomes (HLs) prepared by sonicating a mixture of 90 mol% l-α-dimyristoylphosphatidylcholine and 10 mol% polyoxyethylene (n) dodecyl ether (C12 (EO)n, n = 23) in a buffer solution. Flow cytometric analysis revealed that the number of hepatoblasts increased by around 12-18 times in SB-treated cells compared to non-treated cells. In the colony formation assay, colonies of tumorigenic stem cells were observed in a soft agar plate after SB treatment. HL treatment for 48 h resulted in a remarkable decrease in the number of colonies. HLs also induced apoptosis of tumorigenic stem cells by activating caspase-3. Flow cytometry showed a significant accumulation of HLs, including fluorescent lipids, in tumorigenic hepatic stem cells. The reappearance of tumorigenic stem cells was suppressed even in subsequent subcultures of HL-treated cells. High CYP3A4 activity was observed in a three-dimensional in vitro assay. These results suggest that HL treatment could specifically eliminate tumorigenic hepatic stem cells. Incubation with HLs can be an effective culture method to maintain the quality of stem cells and reduce the risk of tumorigenesis after cell transplantation.


Asunto(s)
Liposomas , Hígado , Células Madre , Apoptosis , Carcinogénesis , Proliferación Celular , Dimiristoilfosfatidilcolina , Humanos
10.
Water Res ; 197: 117086, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33819661

RESUMEN

1,4-Dioxane is one of the most persistent organic micropollutants in conventional drinking-water-treatment processes. Vacuum ultraviolet (VUV) treatment is a promising means of removing micropollutants such as 1,4-dioxane from source water, but this approach has not yet been implemented in a full-scale water treatment plant, partly because the operating parameters for pilot and full-scale VUV photoreactors have not been optimized. Here, we developed a computational fluid dynamics-based method for optimizing VUV photoreactor performance through energy-based analyses that take into account the effects of two important operating parameters-flow rate and radiant exitance. First, we constructed a computational fluid dynamics model and determined the sole parameter required for the model, the pseudo-first-order rate constant for the reaction of 1,4-dioxane, by simple batch experiment. Then, we validated the model by using a pilot-scale flow-through annular photoreactor. Finally, we used the validated model to examine the effects of flow rate and radiant exitance on the efficiency of 1,4-dioxane degradation in a virtual annular photoreactor. Radiation efficiency, which was defined as the ratio of the logarithmic residual ratio of 1,4-dioxane to the theoretical minimum logarithmic residual ratio (best possible performance) under the given operating conditions, was calculated as an energy-based index of cost-effectiveness. Radiation efficiency was found to increase with increasing flow rate but decreasing radiant exitance. An electrical energy per order (EEO) analysis suggested that VUV treatment under laminar flow was most economical when low-power lamps and a high flow rate were used. In contrast, VUV treatment under turbulent flow was suggested to be most economical when high-power lamps were used at a high flow rate.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Dioxanos , Hidrodinámica , Oxidación-Reducción , Rayos Ultravioleta , Vacio
11.
Water Res ; 190: 116786, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33387954

RESUMEN

Although superfine powdered activated carbon has excellent adsorption properties, it is not used in conventional water treatment processes comprising coagulation-flocculation, sedimentation, and sand filtration (CSF) due to concerns about its residual in treated water. Here, we examined the production and fate of very fine carbon particles with lacking in charge neutralization as a source of the residual in sand filtrate after CSF treatment. Almost all of the carbon particles in the water were charge-neutralized by coagulation treatment with rapid mixing, but a very small amount (≤0.4% of the initial concentration) of very fine carbon particles with a lesser degree of charge neutralization were left behind in coagulation process. Such carbon particles, defined as stray carbon particles, were hardly removed by subsequent flocculation and sedimentation processes, and some of them remained in the sand filtrate. The concentration of residual carbon particles in the sand filtrate varied similarly with that of the stray carbon particles. The stray and residual carbon particles were similarly smaller than the particles before coagulation treatment, but the residual carbon particles had less charge neutralization than the stray carbon particles. The turbidity of water samples collected after sedimentation was not correlated with the residual carbon concentration in the sand filtrate, even though it is often used as an indicator of treatment performance with respect to the removal of suspended matter. Based on these findings, we suggest that reduction of the amount of stray particles should be a performance goal of the CSF treatment. Examining this concept further, we confirmed that the residence time distributions in the coagulation and flocculation reactors influenced the concentration of stray carbon particles and then the residual carbon particle concentration in sand filtrate, but found that the effect was dependent on coagulant type. A multi-chambered-reactor configuration lowered both the stray carbon particle concentration after coagulation treatment and the residual carbon particle concentration in sand filtrate compared with a single-chambered reactor configuration. When a normal basicity PACl that consisted mainly of monomeric Al species was used, the stray carbon particle concentration was decreased during coagulation process and then gradually decreased during subsequent flocculation process because the monomeric Al species were transformed to colloidal Al species via polymeric Al species. In contrast, when a high-basicity PACl that consisted mostly of colloidal Al species was used, coagulation treatment largely decreased the stray carbon particle concentration, which did not decrease further during subsequent flocculation process. These findings will be valuable for controlling residual carbon particles after the CSF treatment.


Asunto(s)
Carbón Orgánico , Purificación del Agua , Floculación , Polvos , Arena
12.
Sci Total Environ ; 751: 141636, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32882551

RESUMEN

Several risk scoring and ranking methods have been applied for the prioritization of micropollutants, including pesticides, and in the selection of pesticides to be regulated regionally and nationally. However, the effectiveness of these methods has not been evaluated in Japan. We developed a risk prediction method to select pesticides that have a high probability of being detected in drinking water sources where no monitoring data is available. The risk prediction method was used to select new pesticides for the 2013 Primary List in the Japanese Drinking Water Quality Guidelines. Here, we examined the effectiveness of the method on the basis of the results of water quality examinations conducted by water supply authorities across Japan, and studied ways to improve the risk prediction method. Of the 120 pesticides in the 2013 Primary List, 80 were detected in drinking water sources (raw water entering water treatment plants). The rates of detection of the newly selected pesticides and previously listed pesticides were not significantly different: 64% and 68%, respectively. When the risk predictor was revised to incorporate degradability of dry-field pesticides and current pesticide sales data, the rate of detection of pesticides selected as having a high risk of detection improved from 72% to 88%. We prepared regional versions of the Primary List using the revised risk predictors and verified their utility. The number of listed pesticides varied greatly by region, ranging from 32 to 73; all regional lists were much shorter than the national Primary List. In addition, 55% to 100% of the pesticides detected in each region were included in a Regional Primary List. This work verifies the ability of the risk prediction method to screen pesticides and select those with a high risk of detection.


Asunto(s)
Agua Potable , Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Japón , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
13.
Water Res ; 187: 116412, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32971398

RESUMEN

Here, we examined the removal of soluble divalent manganese (Mn(II)) by combination treatment with superfine powdered activated carbon (SPAC) and free chlorine in a membrane filtration pilot plant and batch experiments. Removal rates >95% were obtained with 3 mg/L SPAC, 1 mg/L chlorine, and a contact time of 4 min, meeting practical performance standards. Mn(II) was found to be oxidized and precipitated on the surface of the activated carbon particles by chlorine. The Mn(II) removal rate was fitted to pseudo-first-order reaction kinetics, and the rate coefficient changed in inverse proportion to as-is particle size, but not to true particle size. The rate coefficient was independent of both Mn(II) concentration, except at high Mn(II) concentration, and the chlorine concentrations tested. The rate-determining step of Mn(II) removal was confirmed to be external-film mass transfer, not chemical oxidation. Activated carbon was found to have a catalytic effect on the oxidation of Mn(II), but the effect was minimal for conventionally sized activated carbon. However, Mn(II) removal at feasible rates for practical application can be expected when the activated carbon particle diameter is reduced to several micrometers. Activated carbon with a particle size of around 1-2 µm may be the most appropriate for Mn(II) removal because particles below this size were aggregated, resulting in reduced removal efficiency.


Asunto(s)
Carbón Orgánico , Purificación del Agua , Adsorción , Cloro , Manganeso , Estrés Oxidativo , Polvos
14.
Sci Total Environ ; 737: 140300, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783868

RESUMEN

Vacuum ultraviolet (VUV) treatment is a promising advanced oxidation process for the removal of organic contaminants during water treatment. Here, we investigated the formation of disinfection by-products from coexisting organic matter during VUV or ultraviolet (UV) treatment following pre-chlorination, and their fates after post-chlorination, in a standard Suwannee River humic acid water and a natural lake water. VUV treatment after pre-chlorination decreased the total trihalomethane (THM) concentration but increased total aldehyde and chloral hydrate concentrations; total haloacetic acid (HAA) and haloacetonitrile (HAN) concentrations did not change. UV treatment after pre-chlorination produced similar changes in the by-products as those observed for VUV treatment, with the exception that the total THM concentration was not changed, and the total HAN concentration was increased. The final concentrations of by-products after post-chlorination were increased by VUV or UV treatment, except for the total HAA concentration, which remained unchanged after UV treatment. The increases were greater after VUV treatment than after UV treatment, probably because the larger amount of hydroxyl radicals generated during VUV treatment compared with during UV treatment transformed coexisting organic matter into precursors of by-products that were then converted to by-products during post-chlorination.

15.
J Am Chem Soc ; 142(39): 16513-16517, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32623880

RESUMEN

Two-dimensional metal-organic frameworks (2D MOFs) have attracted much attention, as they are the crystalline materials that exhibit both conductivity and microporosity. Numerous efforts have been made to advance their application as chemiresistive sensors or electrochemical capacitors. However, the intrinsic physical properties and spin states of these materials remain poorly understood. Most of these 2D MOFs possess a honeycomb lattice, with a Kagomé lattice arrangement of metal cations. These structural characteristics suggest that these MOFs would be candidates for geometrically frustrated spin systems with unprecedented magnetic phenomena. Herein, by performing magnetic susceptibility and specific heat measurements at an ultralow temperature down to 38mK on a 2D semiconductive MOF, Cu3(HHTP)2, a quantum spin liquid state that arises from the geometrical frustration was suggested. This result illustrates the potential of strongly correlated MOFs as systems with emergent phenomena induced by unusual structural topologies.

16.
Water Res ; 183: 116093, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32645580

RESUMEN

Many PACl (poly-aluminum chloride) coagulants with different characteristics have been trial-produced in laboratories and commercially produced, but the selection of a proper PACl still requires empirical information and field testing. Even PACls with the same property sometimes show different coagulation performances. In this study, we compared PACls produced by AlCl3-titration and Al(OH)3-dissolution on their performance during coagulation-flocculation, sedimentation, and sand filtration (CSF) processes. The removal targets were particles of superfine powdered activated carbon (SPAC), which are used for efficient adsorptive removal of micropollutants, but strict removal of SPAC is required because of the high risk of their leakage after CSF. PACls of high-basicity produced by AlCl3-titration and Al(OH)3-dissolution were the same in terms of the ferron assay and colloid charge, but their performance in CSF were completely different. High-basicity Al(OH)3-dissolution PACls formed large floc particles and yielded very few remaining SPAC particles in the filtrate, whereas high-basicity AlCl3-titration PACls did not form large floc particles. High-basicity PACls produced by Al(OH)3-dissolution were superior to low-basicity PACl in lowering remaining SPAC particles by the same method because of their high charge neutralization capacity, although their floc formation ability was similar or slightly inferior. However, high-basicity Al(OH)3-dissolution PACl was inferior when the sulfate ion concentration in the raw water was low. Sulfate ions were required in the raw water for high-basicity PACls to be effective in floc formation. In particular, very high sulfate concentrations were required for high-basicity AlCl3-titration PACls. The rate of hydrolysis, which is related to the polymerization of aluminum species, is a key property, besides charge neutralization capacity, for proper coagulation, including formation of large floc particles. The aluminum species in the high-basicity PACls, in particular that produced by AlCl3-titration, was resistant to hydrolysis, but sulfate ions in raw water accelerated the rate of hydrolysis and thereby facilitated floc formation. Normal-basicity Al(OH)3-dissolution PACl was hydrolysis-prone, even without sulfate ions. Aluminum species in the high-basicity AlCl3-titration PACl were mostly those with a molecular weight (MW) of 1-10 kDa, whereas those of high-basicity Al(OH)3-dissolution PACls were mostly characterized by a MW > 10 kDa. Normal-basicity Al(OH)3-dissolution PACl was the least polymerized and contained monomeric species.


Asunto(s)
Carbón Orgánico , Purificación del Agua , Hidróxido de Aluminio , Floculación , Polvos , Arena , Solubilidad , Sulfatos , Agua
17.
Chemosphere ; 261: 127743, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32721694

RESUMEN

Organophosphorus insecticides are known to be partly transformed to their respective oxons during the chlorination step of drinking water treatment. For most organophosphorus insecticides, the toxicological endpoint for determining acceptable daily intake levels is inhibition of acetylcholinesterase (AChE). Like the parent insecticides, oxons also inhibit AChE, so the presence of oxons in drinking water is also evaluated. However, no attention is paid to the possible presence of transformation products (TPs) other than oxons. In the present study, we determined whether the anti-AChE activity observed for chlorinated solutions of the organophosphorus insecticides malathion and methidathion could be solely attributed to the parent compounds and their oxons. Upon chlorination, both malathion and methidathion were immediately transformed to their oxons; the maximum transformation ratios were 60% and 30%, respectively, indicating that at least 40% and 70% of these compounds were transformed into other TPs. Before chlorination, malathion- and methidathion-containing solutions exhibited little to no anti-AChE activity, but the solutions showed strong activity after chlorination. The contributions of the parent insecticides and their oxons to the activities of the chlorinated samples were calculated from the concentrations of the compounds in the samples and dose-response curves for chemical standards of the compounds. For both the malathion-containing solution and the methidathion-containing solution, the calculated anti-AChE activities were almost the same as the observed activities at every chlorination time. This suggests that the observed activities could be attributed solely to the parent insecticides and their oxons, indicating that other TPs need not be considered.


Asunto(s)
Halogenación , Insecticidas/química , Compuestos Organofosforados/química , Acetilcolinesterasa , Animales , Inhibidores de la Colinesterasa/química , Insecticidas/farmacología , Malatión/química , Compuestos Organotiofosforados/química , Purificación del Agua/métodos
18.
Water Res ; 182: 115992, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32562960

RESUMEN

Three different natural organic matter (NOM)-loading methods were compared for the adsorptive removal of 2-methylisoborneol (MIB) by superfine powdered activated carbon (SPAC) and conventionally-sized powdered activated carbon (PAC). The three NOM-loading methods were: NOM adsorption followed by MIB (MIB adsorption on NOM-preloaded carbon), MIB adsorption followed by NOM (MIB adsorption on NOM post-loaded carbon), and simultaneous NOM and MIB loading (MIB adsorption on NOM-simultaneously loaded carbon). MIB removals were similar for the smaller-sized carbon (SPAC) at higher AC dosages and at lower initial NOM concentrations. The similar MIB removals indicate direct site competition between MIB and NOM with MIB adsorption reversibility (complete desorption of MIB by NOM). At lower AC doses, especially for PACs, and at higher initial NOM concentrations, the adsorption of MIBs depended on the sequence of MIB or NOM adsorption. MIB removal was lowest for the NOM-preloaded carbon, followed by NOM-simultaneously loaded carbon. The highest MIB removal was achieved by post-loading of NOM, indicating that the adsorption is irreversible. MIB adsorption on SPAC was more reversible than on PAC, although the pore size distributions of the two carbons were similar. The high degree of adsorption irreversibility for PAC compared with SPAC indicated that pore blocking occurs due to NOM loading at the PAC particle surface. Images of the external adsorption were obtained using isotope mapping and 15N-labeled effluent organic matter.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Canfanos , Carbón Orgánico , Polvos
19.
Water Res ; 177: 115757, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278989

RESUMEN

Commercially available powdered activated carbon (PAC) with a median diameter of 12-42 µm was ground into 1 µm sized superfine PAC (SPAC) and 200 nm sized submicron SPAC (SSPAC) and investigated as a pretreatment material for the prevention of hydraulically irreversible membrane fouling during a submerged microfiltration (MF) process. Compared with PAC and SPAC, SSPAC has a high capacity for selective biopolymer adsorption, which is a characteristic found in natural organic matter and is commonly considered to be a major contributor to membrane fouling. Precoating the membrane surface with SSPAC during batch filtration further removes the biopolymers by straining them out. In lab-scale membrane filtration experiments, an increase in the transmembrane pressure (TMP) was almost completely prevented through a precoating with SSPAC based on its pulse dose after coagulation pretreatment. The precoated SSPAC formed a dense layer on the membrane preventing biopolymers from attaching to the membrane. Coagulation pretreatment enabled the precoated activated carbon to be rinsed off during hydraulic backwashing. The functionality of the membrane was thereby retained for a long-term operation. Precoating the membranes with SSPAC after coagulation is a promising way to control membrane fouling, and efficiently prevents an increase in the TMP because of the straining effect of the SSPAC and the high capacity of the SSPAC to adsorb any existing biopolymers.


Asunto(s)
Carbón Orgánico , Purificación del Agua , Adsorción , Filtración , Membranas Artificiales , Polvos
20.
Water Res ; 164: 114918, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31377528

RESUMEN

1,4-Dioxane is one of the most persistent organic micropollutants and is quite difficult to remove via conventional drinking water treatment consisting of coagulation, sedimentation, and sand filtration. Vacuum ultraviolet (VUV) treatment has recently been found to show promise as a treatment method for 1,4-dioxane removal, but the associated decomposition rate of 1,4-dioxane is known to be very sensitive to water quality characteristics. Some computational models have been proposed to predict the decomposition rate of micropollutants during VUV treatment, but the effects of only bicarbonate and natural organic matter have been considered in the models. In the present study, we attempted to develop a versatile computational model for predicting the behavior of 1,4-dioxane during VUV treatment that took into account the effects of other coexisting inorganic ions commonly found in natural waters. We first conducted 1,4-dioxane decomposition experiments with low-pressure mercury lamps and test waters that had been prepared by adding various inorganic ions to an aqueous phosphate buffer. The apparent decomposition rate of 1,4-dioxane was suppressed when bicarbonate, chloride, and nitrate were added to the test waters. Whereas bicarbonate and chloride directly suppressed the apparent decomposition rate by consuming HO•, nitrate became influential only after being transformed into nitrite by concomitant UV light (λ = 254 nm) irradiation. Cl-related radicals (Cl• and Cl2•-) did not react with 1,4-dioxane directly. A computational model consisting of 31 ordinary differential equations with respect to time that had been translated from 84 reactions (10 photochemical and 74 chemical reactions) among 31 chemical species was then developed for predicting the behavior of 1,4-dioxane during VUV treatment. Nine of the parameters in the ordinary differential equations were determined by least squares fitting to an experimental dataset that included different concentrations of bicarbonate, chloride, nitrate, and nitrite. Without further parameter adjustments, the model successfully predicted the behavior of 1,4-dioxane during VUV treatment of three groundwaters naturally contaminated with 1,4-dioxane as well as one dechlorinated tap water sample supplemented with 1,4-dioxane.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Dioxanos , Oxidación-Reducción , Rayos Ultravioleta , Vacio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...