Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746097

RESUMEN

Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), in Arabidopsis. FT is expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed with FT and whether they have roles in flowering remains elusive. Through tissue-specific translatome analysis, we discovered that under long-day conditions with the natural sunlight red/far-red ratio, the FT-producing cells express a gene encoding FPF1-LIKE PROTEIN 1 (FLP1). The master FT regulator, CONSTANS (CO), controls FLP1 expression, suggesting FLP1's involvement in the photoperiod pathway. FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA 3 (SEP3), a key E-class homeotic gene. Unlike FT, FLP1 facilitates inflorescence stem elongation. Our cumulative evidence indicates that FLP1 may act as a mobile signal. Thus, FLP1 orchestrates floral initiation together with FT and promotes inflorescence stem elongation during reproductive transitions.

2.
Plant Physiol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805221

RESUMEN

Heme, an organometallic tetrapyrrole, is widely engaged in oxygen transport, electron delivery, enzymatic reactions, and signal transduction. In plants, it is also involved in photomorphogenesis and photosynthesis. HEME OXYGENASE 1 (HO1) initiates the first committed step in heme catabolism, and it has generally been thought that this reaction takes place in chloroplasts. Here, we show that HO1 in both Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) has two transcription start sites (TSSs), producing long (HO1L) and short (HO1S) transcripts. Their products localize to the chloroplast and the cytosol, respectively. During early development or de-etiolation, the HO1L/HO1S ratio gradually increases. Light perception via phytochromes and cryptochromes elevates the HO1L/HO1S ratio in the whole seedling through the functions of ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) and through the suppression of DE-ETIOLATED 1 (DET1), CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), and PHYTOCHROME INTERACTING FACTORs (PIFs). HO1L introduction complements the HO1-deficient mutant; surprisingly, HO1S expression also restores the short hypocotyl phenotype and high pigment content and helps the mutant recover from the genomes uncoupled (gun) phenotype. This indicates the assembly of functional phytochromes within these lines. Furthermore, our findings support the hypothesis that a mobile heme signal is involved in retrograde signaling from the chloroplast. Altogether, our work clarifies the molecular mechanism of HO1 TSS regulation and highlights the presence of a cytosolic bypass for heme catabolism in plant cells.

3.
Plant Cell Physiol ; 65(3): 350-361, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38175914

RESUMEN

Young seedlings use nutrients stored in the seeds to grow and acquire photosynthetic potential. This process, called seedling establishment, involves a developmental phase transition from heterotrophic to autotrophic growth. Some membrane-trafficking mutants of Arabidopsis (Arabidopsis thaliana), such as the katamari2 (kam2) mutant, exhibit growth arrest during seedling development, with a portion of individuals failing to develop true leaves on sucrose-free solid medium. However, the reason for this seedling arrest is unclear. In this study, we show that seedling arrest is a temporal growth arrest response that occurs not only in kam2 but also in wild-type (WT) Arabidopsis; however, the threshold for this response is lower in kam2 than in the WT. A subset of the arrested kam2 seedlings resumed growth after transfer to fresh sucrose-free medium. Growth arrest in kam2 on sucrose-free medium was restored by increasing the gel concentration of the medium or covering the surface of the medium with a perforated plastic sheet. WT Arabidopsis seedlings were also arrested when the gel concentration of sucrose-free medium was reduced. RNA sequencing revealed that transcriptomic changes associated with the rate of seedling establishment were observed as early as 4 d after sowing. Our results suggest that the growth arrest of both kam2 and WT seedlings is an adaptive stress response and is not simply caused by the lack of a carbon source in the medium. This study provides a new perspective on an environmental stress response under unfavorable conditions during the phase transition from heterotrophic to autotrophic growth in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Procesos Autotróficos , Regulación de la Expresión Génica de las Plantas , Procesos Heterotróficos , Plantones
4.
Nucleic Acids Res ; 52(2): e7, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37994784

RESUMEN

Precise detection of the transcriptional start site (TSS) is a key for characterizing transcriptional regulation of genes and for annotation of newly sequenced genomes. Here, we describe the development of an improved method, designated 'TSS-seq2.' This method is an iterative improvement of TSS-seq, a previously published enzymatic cap-structure conversion method to detect TSSs in base sequences. By modifying the original procedure, including by introducing split ligation at the key cap-selection step, the yield and the accuracy of the reaction has been substantially improved. For example, TSS-seq2 can be conducted using as little as 5 ng of total RNA with an overall accuracy of 96%; this yield a less-biased and more precise detection of TSS. We then applied TSS-seq2 for TSS analysis of four plant species that had not yet been analyzed by any previous TSS method.


Asunto(s)
Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción , Secuencia de Bases , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN/métodos
5.
Nat Plants ; 9(2): 302-314, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658391

RESUMEN

The evolution of special types of cells requires the acquisition of new gene regulatory networks controlled by transcription factors (TFs). In stomatous plants, a TF module formed by subfamilies Ia and IIIb basic helix-loop-helix TFs (Ia-IIIb bHLH) regulates stomatal formation; however, how this module evolved during land plant diversification remains unclear. Here we show that, in the astomatous liverwort Marchantia polymorpha, a Ia-IIIb bHLH module regulates the development of a unique sporophyte tissue, the seta, which is found in mosses and liverworts. The sole Ia bHLH gene, MpSETA, and a IIIb bHLH gene, MpICE2, regulate the cell division and/or differentiation of seta lineage cells. MpSETA can partially replace the stomatal function of Ia bHLH TFs in Arabidopsis thaliana, suggesting that a common regulatory mechanism underlies setal and stomatal formation. Our findings reveal the co-option of a Ia-IIIb bHLH TF module for regulating cell fate determination and/or cell division of distinct types of cells during land plant evolution.


Asunto(s)
Arabidopsis , Embryophyta , Marchantia , Marchantia/genética , Proteínas de Plantas/genética , Plantas/genética , Factores de Transcripción/metabolismo , Embryophyta/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
6.
Plant Mol Biol ; 111(1-2): 189-203, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36306001

RESUMEN

De novo genes created in the plant mitochondrial genome have frequently been transferred into the nuclear genome via intergenomic gene transfer events. Therefore, plant mitochondria might be a source of de novo genes in the nuclear genome. However, the functions of de novo genes originating from mitochondria and the evolutionary fate remain unclear. Here, we revealed that an Arabidopsis thaliana specific small coding gene derived from the mitochondrial genome regulates floral transition. We previously identified 49 candidate de novo genes that induce abnormal morphological changes on overexpression. We focused on a candidate gene derived from the mitochondrial genome (sORF2146) that encodes 66 amino acids. Comparative genomic analyses indicated that the mitochondrial sORF2146 emerged in the Brassica lineage as a de novo gene. The nuclear sORF2146 emerged following an intergenomic gene transfer event in the A. thaliana after the divergence between Arabidopsis and Capsella. Although the nuclear and mitochondrial sORF2146 sequences are the same in A. thaliana, only the nuclear sORF2146 is transcribed. The nuclear sORF2146 product is localized in mitochondria, which may be associated with the pseudogenization of the mitochondrial sORF2146. To functionally characterize the nuclear sORF2146, we performed a transcriptomic analysis of transgenic plants overexpressing the nuclear sORF2146. Flowering transition-related genes were highly regulated in the transgenic plants. Subsequent phenotypic analyses demonstrated that the overexpression and knockdown of sORF2146 in transgenic plants resulted in delayed and early flowering, respectively. These findings suggest that a lineage-specific de novo gene derived from mitochondria has an important regulatory effect on floral transition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica , Arabidopsis/metabolismo , Genoma de Planta , Brassica/genética , Perfilación de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores/genética , Flores/metabolismo
7.
Front Plant Sci ; 13: 1051017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36756228

RESUMEN

In the past two decades, many plant peptides have been found to play crucial roles in various biological events by mediating cell-to-cell communications. However, a large number of small open reading frames (sORFs) or short genes capable of encoding peptides remain uncharacterized. In this study, we examined several candidate genes for peptides conserved between two model plants: Arabidopsis thaliana and Marchantia polymorpha. We examined their expression pattern in M. polymorpha and subcellular localization using a transient assay with Nicotiana benthamiana. We found that one candidate, MpSGF10B, was expressed in meristems, gemma cups, and male reproductive organs called antheridiophores. MpSGF10B has an N-terminal signal peptide followed by two leucine-rich repeat (LRR) domains and was secreted to the extracellular region in N. benthamiana and M. polymorpha. Compared with the wild type, two independent Mpsgf10b mutants had a slightly increased number of antheridiophores. It was revealed in gene ontology enrichment analysis that MpSGF10B was significantly co-expressed with genes related to cell cycle and development. These results suggest that MpSGF10B may be involved in the reproductive development of M. polymorpha. Our research should shed light on the unknown role of LRR-only proteins in land plants.

8.
Cell Rep ; 37(11): 110125, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34910911

RESUMEN

Plants tailor immune responses to defend against pathogens with different lifestyles. In this process, antagonism between the immune hormones salicylic acid (SA) and jasmonic acid (JA) optimizes transcriptional signatures specifically to the attacker encountered. Antagonism is controlled by the transcription cofactor NPR1. The indispensable role of NPR1 in activating SA-responsive genes is well understood, but how it functions as a repressor of JA-responsive genes remains unclear. Here, we demonstrate that SA-induced NPR1 is recruited to JA-responsive promoter regions that are co-occupied by a JA-induced transcription complex consisting of the MYC2 activator and MED25 Mediator subunit. In the presence of SA, NPR1 physically associates with JA-induced MYC2 and inhibits transcriptional activation by disrupting its interaction with MED25. Importantly, NPR1-mediated inhibition of MYC2 is a major immune mechanism for suppressing pathogen virulence. Thus, NPR1 orchestrates the immune transcriptome not only by activating SA-responsive genes but also by acting as a corepressor of JA-responsive MYC2.


Asunto(s)
Aminoácidos/toxicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Indenos/toxicidad , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Antiinfecciosos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras , Ciclopentanos/farmacología , Oxilipinas/farmacología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/farmacología , Pseudomonas syringae/química , Ácido Salicílico/farmacología , Transducción de Señal
9.
Plant Signal Behav ; 16(12): 1989216, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34696695

RESUMEN

Hydathode is a plant tissue of vascular plants involved in water release called guttation. Arabidopsis hydathodes are found at the tips of leaf teeth and contain three major components: water pores, xylem ends, and small cells. Leaf teeth are known as the main parts for auxin biosynthesis and accumulation during leaf development. However, the detailed spatiotemporal relationship between auxin dynamics and hydathode development is unknown. In this study, we show that auxin biosynthesis and accumulation precede hydathode development. A triple marker line (called YDE line) containing three leaf tooth markers: YUC4:nls-3xGFP (auxin biosynthesis), DR5rev:erRFP (auxin accumulation or maxima), and E325-GFP (hydathode development), was generated, and spatiotemporal confocal microscopic analysis was carried out. The expression area of these markers became larger during leaf development, implying that the hydathode size enlarges as the leaf tooth grows. Detailed observation revealed that the auxin-related markers YUC4:nls-GFP and DR5rev:erRFP were first expressed in the early stage of leaf tooth growth. Then, E325-GFP was expressed partly overlapping with the auxin markers at a later stage. These findings provide new insights into the spatiotemporal relationship between auxin dynamics and hydathode development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/metabolismo , Xilema/metabolismo
10.
J Exp Bot ; 72(4): 1260-1270, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33165567

RESUMEN

Hydathodes are typically found at leaf teeth in vascular plants and are involved in water release to the outside. Although morphological and physiological analysis of hydathodes has been performed in various plants, little is known about the genes involved in hydathode function. In this study, we performed fluorescent protein-based imaging and tissue-specific RNA-seq analysis in Arabidopsis hydathodes. We used the enhancer trap line E325, which has been reported to express green fluorescent protein (GFP) at its hydathodes. We found that E325-GFP was expressed in small cells found inside the hydathodes (named E cells) that were distributed between the water pores and xylem ends. No fluorescence of the phloem markers pSUC2:GFP and pSEOR1:SEOR1-YFP was observed in the hydathodes. These observations indicate that Arabidopsis hydathodes are composed of three major components: water pores, xylem ends, and E cells. In addition, we performed transcriptome analysis of the hydathode using the E325-GFP line. Microsamples were collected from GFP-positive or -negative regions of E325 leaf margins with a needle-based device (~130 µm in diameter). RNA-seq was performed with each single microsample using a high-throughput library preparation method called Lasy-Seq. We identified 72 differentially expressed genes. Among them, 68 genes showed significantly higher and four genes showed significantly lower expression in the hydathode. Our results provide new insights into the molecular basis for hydathode physiology and development.


Asunto(s)
Arabidopsis/fisiología , Hojas de la Planta/fisiología , Agua/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis , RNA-Seq , Xilema/fisiología
11.
Plant Physiol ; 183(1): 304-316, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32193212

RESUMEN

Blue-light-induced chloroplast movements play an important role in maximizing light utilization for photosynthesis in plants. Under a weak light condition, chloroplasts accumulate to the cell surface to capture light efficiently (chloroplast accumulation response). Conversely, chloroplasts escape from strong light and move to the side wall to reduce photodamage (chloroplast avoidance response). The blue light receptor phototropin (phot) regulates these chloroplast movements and optimizes leaf photosynthesis by controlling other responses in addition to chloroplast movements. Seed plants such as Arabidopsis (Arabidopsis thaliana) have phot1 and phot2. They redundantly mediate phototropism, stomatal opening, leaf flattening, and the chloroplast accumulation response. However, the chloroplast avoidance response is induced by strong blue light and regulated primarily by phot2. Phots are localized mainly on the plasma membrane. However, a substantial amount of phot2 resides on the chloroplast outer envelope. Therefore, differentially localized phot2 might have different functions. To determine the functions of plasma membrane- and chloroplast envelope-localized phot2, we tethered it to these structures with their respective targeting signals. Plasma membrane-localized phot2 regulated phototropism, leaf flattening, stomatal opening, and chloroplast movements. Chloroplast envelope-localized phot2 failed to mediate phototropism, leaf flattening, and the chloroplast accumulation response but partially regulated the chloroplast avoidance response and stomatal opening. Based on the present and previous findings, we propose that phot2 localized at the interface between the plasma membrane and the chloroplasts is required for the chloroplast avoidance response and possibly for stomatal opening as well.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Fototropinas/metabolismo , Fototropismo/genética , Fototropismo/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología
12.
Methods Mol Biol ; 2026: 143-148, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31317409

RESUMEN

Recently, phytochrome has been shown to regulate not only transcription but also alternative splicing at a similar genomic scale in Arabidopsis. Here I describe the protocols for detecting phytochrome-mediated light-responsive alterations in alternative splicing in Arabidopsis, using RT-PCR technique followed by quantification with the Bioanalyzer.


Asunto(s)
Empalme Alternativo/fisiología , Arabidopsis/metabolismo , Fitocromo/metabolismo , Empalme Alternativo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fitocromo/genética
13.
Plant Cell Environ ; 42(5): 1615-1629, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30620085

RESUMEN

Brassinosteroid (BR) signalling is known to be coordinated with light signalling in above ground tissue. Many studies focusing on the shade avoidance response in above ground tissue or hypocotyl elongation in darkness have revealed the contribution of the BR signalling pathway to these processes. We previously analysed the expression of DWARF 4 (DWF4), a key BR biosynthesis enzyme, and revealed that light perception in above ground tissues triggered DWF4 accumulation in root tips. To determine the required wavelength of light and photoreceptors responsible for this regulation, we studied DWF4-GUS marker plants grown in several monochromatic light conditions. We revealed that monochromatic blue LED light could induce DWF4 accumulation in primary root tips and root growth as much as white light, whereas monochromatic red LED could not. Consistent with this, a cryptochrome1/2 double mutant showed retarded root growth under white light whereas a phytochromeA/B double mutant did not. Taken together, our data strongly indicated that blue light signalling was important for DWF4 accumulation in root tips and root growth. Furthermore, DWF4 accumulation patterns in primary root tips were not altered by auxin or sugar treatment. Therefore, we hypothesize that blue light signalling from the shoot tissue is different from auxin and sugar signalling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Criptocromos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis , Oscuridad , Regulación de la Expresión Génica de las Plantas , Fototransducción/fisiología , Raíces de Plantas/metabolismo
15.
Sci Rep ; 8(1): 1472, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367686

RESUMEN

Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m-2 s-1), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.


Asunto(s)
Arabidopsis/fisiología , Forma de la Célula , Cloroplastos/fisiología , Luz , Fotosíntesis , Hojas de la Planta/fisiología , Arabidopsis/efectos de la radiación , Clorofila/metabolismo , Cloroplastos/efectos de la radiación , Desarrollo de la Planta , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de la radiación
16.
Cell ; 171(6): 1316-1325.e12, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29129375

RESUMEN

Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fitocromo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Regiones Promotoras Genéticas
17.
J Plant Res ; 129(2): 175-87, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26858202

RESUMEN

The blue light (BL) receptor phototropin (phot) is specifically found in green plants; it regulates various BL-induced responses such as phototropism, chloroplast movement, stomatal opening, and leaf flattening. In Arabidopsis thaliana, two phototropins--phot1 and phot2--respond to blue light in overlapping but distinct ways. These BL-receptor-mediated responses enhance the photosynthetic activity of plants under weak light and minimize photodamage under strong light conditions. Welwitschia mirabilis Hook.f. found in the Namib Desert, and it has adapted to severe environmental stresses such as limiting water and strong sunlight. Although the plant has physiologically and ecologically unique features, it is unknown whether phototropin is functional in this plant. In this study, we assessed the functioning of phot-mediated BL responses in W. mirabilis. BL-dependent phototropism and stomatal opening was observed but light-dependent chloroplast movement was not detected. We performed a functional analysis of the PHOT1 gene of W. mirabilis, WmPHOT1, in Arabidopsis thaliana. We generated transgenic A. thaliana lines expressing WmPHOT1 in a phot1 phot2 double mutant background. Several Wmphot1 transgenic plants showed normal growth, although phot1 phot2 double mutant plants showed stunted growth. Furthermore, Wmphot1 transgenic plants showed normal phot1-mediated responses including phototropism, chloroplast accumulation, stomatal opening, and leaf flattening, but lacked the chloroplast avoidance response that is specifically mediated by phot2. Thus, our findings indicate that W. mirabilis possesses typical phot-mediated BL responses that were at least partially mediated by functional phototropin 1, an ortholog of Atphot1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Gnetophyta/fisiología , Fototransducción , Fosfoproteínas/metabolismo , Fototropinas/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Gnetophyta/genética , Gnetophyta/efectos de la radiación , Luz , Mutación , Fosfoproteínas/genética , Fotosíntesis/efectos de la radiación , Fototropinas/genética , Fototropismo/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación
18.
Plant Cell Physiol ; 56(10): 2014-23, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26272552

RESUMEN

Plants have evolved various mechanisms that protect against the harmful effects of UV-B radiation (280-315 nm) on growth and development. Cyclobutane pyrimidine dimer (CPD) photolyase, the repair enzyme for UV-B-induced CPDs, is essential for protecting cells from UV-B radiation. Expression of the CPD photolyase gene (PHR) is controlled by light with various wavelengths including UV-B, but the mechanisms of this regulation remain poorly understood. In this study, we investigated the regulation of PHR expression by light with various wavelengths, in particular low-fluence UV-B radiation (280 nm, 0.2 µmol m(-2) s(-1)), in Arabidopsis thaliana seedlings grown under light-dark cycles for 7 d and then adapted to the dark for 3 d. Low-fluence UV-B radiation induced CPDs but not reactive oxygen species. AtPHR expression was effectively induced by UV-B, UV-A (375 nm) and blue light. Expression induced by UV-A and blue light was predominantly regulated by the cryptochrome-dependent pathway, whereas phytochromes A and B played a minor but noticeable role. Expression induced by UV-B was predominantly regulated by the UVR8-dependent pathway. AtPHR expression was also mediated by a UVR8-independent pathway, which is correlated with CPD accumulation induced by UV-B radiation. These results indicate that Arabidopsis has evolved diverse mechanisms to regulate CPD photolyase expression by multiple photoreceptor signaling pathways, including UVR8-dependent and -independent pathways, as protection against harmful effects of UV-B radiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Desoxirribodipirimidina Fotoliasa/metabolismo , Rayos Ultravioleta , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Desoxirribodipirimidina Fotoliasa/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Transducción de Señal/efectos de la radiación
19.
Plant Cell ; 27(4): 1173-84, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25841039

RESUMEN

Axillary shoot formation is a key determinant of plant architecture. Formation of the axillary shoot is regulated by initiation of the axillary meristem or outgrowth of the axillary bud. Here, we show that rice (Oryza sativa) TILLERS ABSENT1 (TAB1; also known as Os WUS), an ortholog of Arabidopsis thaliana WUS, is required to initiate axillary meristem development. We found that formation of the axillary meristem in rice proceeds via a transient state, which we term the premeristem, characterized by the expression of OSH1, a marker of indeterminate cells in the shoot apical meristem. In the tab1-1 (wus-1) mutant, however, formation of the axillary meristem is arrested at various stages of the premeristem zone, and OSH1 expression is highly reduced. TAB1/WUS is expressed in the premeristem zone, where it shows a partially overlapping pattern with OSH1. It is likely, therefore, that TAB1 plays an important role in maintaining the premeristem zone and in promoting the formation of the axillary meristem by promoting OSH1 expression. Temporal expression patterns of WUSCHEL-RELATED HOMEOBOX4 (WOX4) indicate that WOX4 is likely to regulate meristem maintenance instead of TAB1 after establishment of the axillary meristem. Lastly, we show that the prophyll, the first leaf in the secondary axis, is formed from the premeristem zone and not from the axillary meristem.


Asunto(s)
Meristema/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Oryza/genética , Proteínas de Plantas/genética , Unión Proteica
20.
Proc Natl Acad Sci U S A ; 111(52): 18781-6, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512548

RESUMEN

Plants monitor the ambient light conditions using several informational photoreceptors, including red/far-red light absorbing phytochrome. Phytochrome is widely believed to regulate the transcription of light-responsive genes by modulating the activity of several transcription factors. Here we provide evidence that phytochrome significantly changes alternative splicing (AS) profiles at the genomic level in Arabidopsis, to approximately the same degree as it affects steady-state transcript levels. mRNA sequencing analysis revealed that 1,505 and 1,678 genes underwent changes in their AS and steady-state transcript level profiles, respectively, within 1 h of red light exposure in a phytochrome-dependent manner. Furthermore, we show that splicing factor genes were the main early targets of AS control by phytochrome, whereas transcription factor genes were the primary direct targets of phytochrome-mediated transcriptional regulation. We experimentally validated phytochrome-induced changes in the AS of genes that are involved in RNA splicing, phytochrome signaling, the circadian clock, and photosynthesis. Moreover, we show that phytochrome-induced AS changes of SPA1-RELATED 3, the negative regulator of light signaling, physiologically contributed to promoting photomorphogenesis. Finally, photophysiological experiments demonstrated that phytochrome transduces the signal from its photosensory domain to induce light-dependent AS alterations in the nucleus. Taking these data together, we show that phytochrome directly induces AS cascades in parallel with transcriptional cascades to mediate light responses in Arabidopsis.


Asunto(s)
Empalme Alternativo/fisiología , Arabidopsis/metabolismo , Fitocromo/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...