Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Front Cell Neurosci ; 18: 1349878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433862

RESUMEN

Protein kinase C γ (PKCγ), a neuronal isoform present exclusively in the central nervous system, is most abundantly expressed in cerebellar Purkinje cells (PCs). Targeted deletion of PKCγ causes a climbing fiber synapse elimination in developing PCs and motor deficit. However, physiological roles of PKCγ in adult mouse PCs are little understood. In this study, we aimed to unravel the roles of PKCγ in mature mouse PCs by deleting PKCγ from adult mouse PCs of PKCγfl/fl mice via cerebellar injection of adeno-associated virus (AAV) vectors expressing Cre recombinase under the control of the PC-specific L7-6 promoter. Whole cell patch-clamp recording of PCs showed higher intrinsic excitability in PCs virally lacking PKCγ [PKCγ-conditional knockout (PKCγ-cKO) PCs] than in wild-type (WT) mouse PCs in the zebrin-negative module, but not in the zebrin-positive module. AAV-mediated PKCγ re-expression in PKCγ-deficient mouse PCs in the zebrin-negative module restored the enhanced intrinsic excitability to a level comparable to that of wild-type mouse PCs. In parallel with higher intrinsic excitability, we found larger hyperpolarization-activated cyclic nucleotide-gated (HCN) channel currents in PKCγ-cKO PCs located in the zebrin-negative module, compared with those in WT mouse PCs in the same region. However, pharmacological inhibition of the HCN currents did not restore the enhanced intrinsic excitability in PKCγ-cKO PCs in the zebrin-negative module. These results suggested that PKCγ suppresses the intrinsic excitability in zebrin-negative PCs, which is likely independent of the HCN current inhibition.

2.
Mol Ther Methods Clin Dev ; 32(1): 101185, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38282896

RESUMEN

The production of cell-type- and age-specific genetically modified mice is a powerful approach for unraveling unknown gene functions. Here, we present a simple and timesaving method that enables adeno-associated virus (AAV)-mediated cell-type- and age-specific recombination in floxed mice. To achieve astrocyte-specific recombination in floxed Ai14 reporter mice, we intravenously injected blood-brain barrier-penetrating AAV-PHP.eB vectors expressing Cre recombinase (Cre) using the astrocyte-specific mouse glial fibrillary acidic protein (mGfaABC1D) promoter. However, we observed nonspecific neuron-predominant transduction despite the use of an astrocyte-specific promoter. We speculated that subtle but continuous Cre expression in nonastrocytic cells triggers recombination, and that excess production of Cre in astrocytes inhibits recombination by forming Cre-DNA aggregates. Here, we resolved this paradoxical event by dividing a single AAV into two mGfaABC1D-promoter-driven AAV vectors, one expressing codon-optimized flippase (FlpO) and another expressing flippase recognition target-flanked rapidly degrading Cre (dCre), together with switching the neuron-tropic PHP.eB capsid to astrocyte-tropic AAV-F. Moreover, we found that the FlpO-dCre system with a target cell-tropic capsid can also function in neuron-targeting recombination in floxed mice.

3.
Mol Ther Methods Clin Dev ; 29: 81-92, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-36970652

RESUMEN

Upon systemic administration, adeno-associated virus serotype 9 (AAV9) and the capsid variant PHP.eB show distinct tropism for the central nervous system (CNS), whereas AAV2 and the capsid variant BR1 transduce brain microvascular endothelial cells (BMVECs) with little transcytosis. Here, we show that a single amino acid substitution (from Q to N) in the BR1 capsid at position 587 (designated BR1N) confers a significantly higher blood-brain barrier (BBB) penetration capacity to BR1. Intravenously infused BR1N showed significantly higher CNS tropism than BR1 and AAV9. BR1 and BR1N likely use the same receptor for entry into BMVECs; however, the single amino acid substitution has profound consequences on tropism. This suggests that receptor binding alone does not determine the final outcome in vivo and that further improvements of capsids within predetermined receptor usage are feasible.

4.
Commun Biol ; 5(1): 1224, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369525

RESUMEN

Here we describe the microglia-targeting adeno-associated viral (AAV) vectors containing a 1.7-kb putative promoter region of microglia/macrophage-specific ionized calcium-binding adaptor molecule 1 (Iba1), along with repeated miRNA target sites for microRNA (miR)-9 and miR-129-2-3p. The 1.7-kb genomic sequence upstream of the start codon in exon 1 of the Iba1 (Aif1) gene, functions as microglia preferential promoter in the striatum and cerebellum. Furthermore, ectopic transgene expression in non-microglial cells is markedly suppressed upon adding two sets of 4-repeated miRNA target sites for miR-9 and miR-129-2-3p, which are expressed exclusively in non-microglial cells and sponged AAV-derived mRNAs. Our vectors transduced ramified microglia in healthy tissues and reactive microglia in lipopolysaccharide-treated mice and a mouse model of neurodegenerative disease. Moreover, live fluorescent imaging allowed the monitoring of microglial motility and intracellular Ca2+ mobilization. Thus, microglia-targeting AAV vectors are valuable for studying microglial pathophysiology and therapies, particularly in the striatum and cerebellum.


Asunto(s)
MicroARNs , Enfermedades Neurodegenerativas , Animales , Ratones , Lipopolisacáridos , Microglía/metabolismo , MicroARNs/genética , Enfermedades Neurodegenerativas/metabolismo , Transgenes
5.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35145028

RESUMEN

The cerebellum, the site where protein kinase C (PKC) was first discovered, contains the highest amount of PKC in the central nervous system, with PKCγ being the major isoform. Systemic PKCγ-knockout (KO) mice showed impaired motor coordination and deficient pruning of surplus climbing fibers (CFs) from developing cerebellar Purkinje cells (PCs). However, the physiological significance of PKCγ in the mature cerebellum and the cause of motor incoordination remain unknown. Using adeno-associated virus vectors targeting PCs, we showed that impaired motor coordination was restored by re-expression of PKCγ in mature PKCγ-KO mouse PCs in a kinase activity-dependent manner, while normal motor coordination in mature Prkcgfl/fl mice was impaired by the Cre-dependent removal of PKCγ from PCs. Notably, the rescue or removal of PKCγ from mature PKCγ-KO or Prkcgfl/fl mice, respectively, did not affect the CF innervation profile of PCs, suggesting the presence of a mechanism distinct from multiple CF innervation of PCs for the motor defects in PKCγ-deficient mice. We found marked potentiation of Ca2+-activated large-conductance K+ (BK) channel currents in PKCγ-deficient mice, as compared to wild-type mice, which decreased the membrane resistance, resulting in attenuation of the electrical signal during the propagation and significant alterations of the complex spike waveform. These changes in PKCγ-deficient mice were restored by the rescue of PKCγ or pharmacological suppression of BK channels. Our results suggest that PKCγ is a critical regulator that negatively modulates BK currents in PCs, which significantly influences PC output from the cerebellar cortex and, eventually, motor coordination.


Asunto(s)
Terapia Genética , Actividad Motora/genética , Canales de Potasio Calcio-Activados/metabolismo , Proteína Quinasa C/metabolismo , Células de Purkinje/enzimología , Animales , Señalización del Calcio , Eliminación de Gen , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Canales de Potasio Calcio-Activados/genética , Proteína Quinasa C/genética , Potenciales Sinápticos
6.
Neurosci Lett ; 756: 135956, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33989730

RESUMEN

Adeno-associated virus (AAV)- PHP.B and AAV-PHP.eB (PHP.eB), a capsid variant of AAV serotype 9, efficiently penetrates the mouse blood-brain barrier and predominantly infects neurons. Thus, the PHP.B / PHP.eB capsid and a neuron-specific promoter is a reasonable combination for effective neuronal transduction. However, the transduction characteristics of intravenously administered PHP.B / PHP.eB carrying different neuron-specific promoters have not been studied systematically. In this study, using an intravenous infusion of PHP.eB in mice, we performed a comparative study of the ubiquitous CBh and three neuron-specific promoters, the Ca2+/calmodulin-dependent kinase subunit α (CaMKII) promoter, neuron-specific enolase (NSE) promoter, and synapsin I with a minimal CMV sequence (SynI-minCMV) promoter. Expression levels of a transgene by three neuron-specific promoters were comparable to or higher than those of the CBh promoter. Among the promoters examined, the NSE promoter showed the highest transgene expression. All neuron-specific promoters were activated specifically in the neurons. PHP.eB carrying the CaMKII promoter, which is generally believed to exert its function exclusively in the excitatory neurons, transduced both the excitatory and inhibitory neurons without bias, whereas PHP.eB with the NSE and SynI-minCMV promoters transduced neurons with significant bias toward inhibitory neurons. These results are useful in neuron-targeted broad transgene expression through systemic infusion of blood-brain-barrier-penetrating AAV vectors carrying the neuron-specific promoter.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Regiones Promotoras Genéticas , Animales , Barrera Hematoencefálica/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dependovirus , Ratones , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo
7.
Neuroscience ; 462: 328-336, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32278059

RESUMEN

Retinoid-related orphan receptor α (RORα) is a transcription factor expressed in a variety of tissues throughout the body. Knockout of RORα leads to various impairments, including defects in cerebellar development, circadian rhythm, lipid metabolism, immune function, and bone development. Previous studies have shown significant reduction of RORα expression in Purkinje cells (PCs) of spinocerebellar ataxia (SCA) type 1 and type 3/MJD (Machado-Joseph disease) model mice. However, it remains unclear to what extent the RORα reduction in PCs is involved in the disease pathology. Here, RORα expression was downregulated specifically in mature mouse PCs by intravenous infusion of blood-brain barrier-permeable adeno-associated virus (AAV), expressing a microRNA against RORα (miR-RORα) under the control of the PC-specific L7-6 promoter. The systemic AAV infusion led to extensive transduction of PCs. The RORα knock-down caused degeneration of PCs including disruption of the PC monolayer alignment and dendrite atrophy. In behavioral experiments, mice expressing miR-RORα showed motor learning deficits, and later, overt cerebellar ataxia. Thus, RORα in mature PCs plays pivotal roles in maintenance of PC dendrites and the monolayer alignment, and consequently, motor learning and motor function. Decrease in RORα expression in PCs could be a primary etiology of the cerebellar symptoms in patients with SCA1 and SCA3/MJD.


Asunto(s)
Células de Purkinje , Ataxias Espinocerebelosas , Animales , Cerebelo , Dendritas , Humanos , Ratones , Ratones Noqueados , Fenotipo , Retinoides , Ataxias Espinocerebelosas/genética
9.
Neurobiol Dis ; 121: 263-273, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343032

RESUMEN

Cerebellar Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex, and damage to PCs results in motor deficits. Spinocerebellar ataxia type 3 (SCA3, also known as Machado-Joseph disease), a hereditary neurodegenerative disease, is caused by an abnormal expansion of the polyglutamine tract in the causative ATXN3 protein. SCA3 affects a wide range of cells in the central nervous system, including those in the cerebellum. To unravel SCA3 pathology, we used adeno-associated virus serotype 9 (AAV9) vectors to express full-length ATXN3 with an abnormally expanded 89 polyglutamine stretch (ATXN3[Q89]) in cerebellar neurons of mature wild-type mice. Mice expressing ATXN3[Q89] exhibited motor impairment in a manner dependent on the viral titer. Immunohistochemistry of the cerebellum showed ubiquitinated nuclear aggregates in PCs; degeneration of PC dendrites; and a significant decrease in multiple proteins including retinoid-related orphan receptor α (RORα), a transcription factor, and type 1 metabotropic glutamate receptor (mGluR1) signaling molecules. Patch clamp analysis of ATXN3[Q89]-expressing PCs revealed marked defects in mGluR1 signaling. Notably, the emergence of behavioral, morphological, and functional defects was inhibited by a single injection of SR1078, an RORα/γ agonist. These results suggest that RORα plays a key role in mutant ATXN3-mediated aberrant phenotypes and that the pharmacological enhancement of RORα could function as a method for therapeutic intervention in SCA3.


Asunto(s)
Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células de Purkinje/metabolismo , Proteínas Represoras/metabolismo , Animales , Ataxina-3/genética , Dendritas/patología , Humanos , Enfermedad de Machado-Joseph/patología , Ratones Endogámicos C57BL , Péptidos/genética , Agregación Patológica de Proteínas/metabolismo , Células de Purkinje/patología , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Represoras/genética , Transducción de Señal
10.
Mol Neurobiol ; 56(6): 4203-4214, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30291583

RESUMEN

Adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV serotype 9, is highly permeable to the blood-brain barrier. A major obstacle to the systemic use of AAV-PHP.B is the generation of neutralizing antibodies (NAbs); however, temporal profiles of NAb production after exposure to AAV-PHP.B, and the influence on later AAV-PHP.B administration, remains unknown. To address these, AAV-PHP.Bs expressing either GFP or mCherry by neuron-specific or astrocyte-specific promoters were intravenously administered to mice at various intervals, and brain expression was examined. Injection of two AAV-PHP.Bs, separated temporally, showed that as little as a 1-day interval between injections resulted in a significant decrease in expression of the second transgene, with a complete loss of expression after 7 days, paralleling an increase in serum NAb titers. Brain parenchymal injection was explored to circumvent the presence of NAbs. Mice systemically pre-treated with an AAV-PHP.B were injected intra-cerebrally with an AAV-PHP.B expressing GFP. After 2 weeks, marked GFP expression in the cerebellum was evident, showing that pre-existing NAbs did not affect the AAV-PHP.B directly injected into the brain. In contrast, reversing the injection order, i.e., cerebellar injection followed by systemic injection, completely eliminated expression of the second transgene. We confirmed that intra-cerebellar injection produced NAbs in the serum, but not in the cerebrospinal fluid (CSF). Our results indicate that the preclusion of brain transduction by a second AAV-PHP.B administration begins from the first day following systemic injection and is established within 1 week. Serum NAbs can be avoided by directly injecting AAV-PHP.Bs into brain tissue.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Sistema Nervioso Central/metabolismo , Dependovirus/metabolismo , Transducción Genética , Animales , Anticuerpos Neutralizantes/administración & dosificación , Astrocitos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ciclosporina/farmacología , Inyecciones , Proteínas Luminiscentes/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Regiones Promotoras Genéticas/genética , Coloración y Etiquetado , Transgenes
11.
Front Cell Neurosci ; 12: 490, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618637

RESUMEN

Thyrotropin-releasing hormone (TRH) regulates various physiological activities through activation of receptors expressed in a broad range of cells in the central nervous system. The cerebellum expresses TRH receptors in granule cells and molecular layer interneurons. However, the function of TRH in the cerebellum remains to be clarified. Here, using TRH knockout (KO) mice we studied the role of TRH in the cerebellum. Immunohistochemistry showed no gross morphological differences between KO mice and wild-type (WT) littermates in the cerebellum. In the rotarod test, the initial performance of KO mice was comparable to that of WT littermates, but the learning speed of KO mice was significantly lower than that of WT littermates, suggesting impaired motor learning. The motor learning deficit in KO mice was rescued by intraperitoneal injection of TRH. Electrophysiology revealed absence of long-term depression (LTD) at parallel fiber-Purkinje cell synapses in KO mice, which was rescued by bath-application of TRH. TRH was shown to increase cyclic guanosine monophosphate (cGMP) content in the cerebellum. Since nitric oxide (NO) stimulates cGMP synthesis in the cerebellum, we examined whether NO-cGMP pathway was involved in TRH-mediated LTD rescue in KO mice. Pharmacological blockade of NO synthase and subsequent cGMP production prevented TRH-induced LTD expression in KO mice, whereas increase in cGMP signal in Purkinje cells by 8-bromoguanosine cyclic 3',5'-monophosphate, a membrane-permeable cGMP analog, restored LTD without TRH application. These results suggest that TRH is involved in cerebellar LTD presumably by upregulating the basal cGMP level in Purkinje cells, and, consequently, in motor learning.

12.
Neurosci Lett ; 665: 182-188, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29175632

RESUMEN

Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken ß-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors.


Asunto(s)
Encéfalo/virología , Cápside/virología , Dependovirus/genética , Neuronas/virología , Administración Intravenosa/métodos , Animales , Astrocitos/virología , Encéfalo/metabolismo , Callithrix , Femenino , Ganglios Espinales/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Masculino , Neuronas/metabolismo , Transducción Genética/métodos
13.
J Neurochem ; 143(6): 660-670, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29049849

RESUMEN

Cerebellar Purkinje cells (PCs) express two members of the classical protein kinase C (cPKC) subfamily, namely, PKCα and PKCγ. Previous studies on PKCγ knockout (KO) mice have revealed a critical role of PKCγ in the pruning of climbing fibers (CFs) from PCs during development. The question remains as to why only PKCγ and not PKCα is involved in CF synapse elimination from PCs. To address this question, we assessed the expression levels of PKCγ and PKCα in wild-type (WT) and PKCγ KO PCs using PC-specific quantitative real-time reverse transcription-polymerase chain reaction, western blotting, and immunohistochemical analysis. The results revealed that the vast majority of cPKCs in PCs were PKCγ, whereas PKCα accounted for the remaining minimal fraction. The amount of PKCα was not up-regulated in PKCγ KO PCs. Lentiviral expression of PKCα in PKCγ KO PCs resulted in a 10-times increase in the amount of PKCα mRNA in the PKCγ KO PCs, compared to that in WT PCs. Our quantification showed that the expression levels of cPKC mRNA in PKCγ KO PCs increased roughly from 1% to 22% of that in WT PCs solely through PKCα expression. The up-regulation of PKCα in PKCγ KO PCs significantly rescued the impaired CF synapse elimination. Although both PKCα and PKCγ are capable of pruning supernumerary CF synapses from developing PCs, these results suggest that the expression levels of cPKCs in PKCγ KO PCs are too low for CF pruning.


Asunto(s)
Cerebelo/enzimología , Cerebelo/crecimiento & desarrollo , Proteína Quinasa C/biosíntesis , Células de Purkinje/citología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Nerviosas/metabolismo , Isoformas de Proteínas , Transcriptoma
14.
Mol Ther Methods Clin Dev ; 6: 159-170, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28828391

RESUMEN

Cell-type-specific promoters in combination with viral vectors and gene-editing technology permit efficient gene manipulation in specific cell populations. Cerebellar Purkinje cells play a pivotal role in cerebellar functions. Although the Purkinje cell-specific L7 promoter is widely used for the generation of transgenic mice, it remains unsuitable for viral vectors because of its large size (3 kb) and exceedingly weak promoter activity. Here, we found that the 0.8-kb region (named here as L7-6) upstream of the transcription initiation codon in the first exon was alone sufficient as a Purkinje cell-specific promoter, presenting a far stronger promoter activity over the original 3-kb L7 promoter with a sustained significant specificity to Purkinje cells. Intravenous injection of adeno-associated virus vectors that are highly permeable to the blood-brain barrier confirmed the Purkinje cell specificity of the L7-6 in the CNS. The features of the L7-6 were also preserved in the marmoset, a non-human primate. The high sequence homology of the L7-6 among mouse, marmoset, and human suggests the preservation of the promoter strength and Purkinje cell specificity features also in humans. These findings suggest that L7-6 will facilitate the cerebellar research targeting the pathophysiology and gene therapy of cerebellar disorders.

15.
Mol Neurobiol ; 54(3): 1745-1758, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-26884266

RESUMEN

The common marmoset is a small New World primate that has attracted remarkable attention as a potential experimental animal link between rodents and humans. Adeno-associated virus (AAV) vector-mediated expression of a disease-causing gene or a potential therapeutic gene in the brain may allow the construction of a marmoset model of a brain disorder or an exploration of the possibility of gene therapy. To gain more insights into AAV vector-mediated transduction profiles in the marmoset central nervous system (CNS), we delivered AAV serotype 9 (AAV9) vectors expressing GFP to the cisterna magna or the cerebellar cortex. Intracisternally injected AAV9 vectors expanded in the CNS according to the cerebrospinal fluid (CSF) flow, by retrograde transport through neuronal axons or via intermediary transcytosis, resulting in diffuse and global transduction within the CNS. In contrast, cerebellar parenchymal injection intensely transduced a more limited area, including the cerebellar cortex and cerebellar afferents, such as neurons of the pontine nuclei, vestibular nucleus and inferior olivary nucleus. In the spinal cord, both administration routes resulted in labeling of the dorsal column and spinocerebellar tracts, presumably by retrograde transport from the medulla oblongata and cerebellum, respectively. Motor neurons and dorsal root ganglia were also transduced, possibly by diffusion of the vector down the subarachnoid space along the cord. Thus, these two administration routes led to distinct transduction patterns in the marmoset CNS, which could be utilized to generate different disease animal models and to deliver therapeutic genes for the treatment of diseases affecting distinct brain areas.


Asunto(s)
Cerebelo/metabolismo , Cisterna Magna/metabolismo , Dependovirus , Vectores Genéticos/administración & dosificación , Transducción Genética/métodos , Animales , Callithrix , Sistema Nervioso Central/química , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Cerebelo/química , Cerebelo/efectos de los fármacos , Cisterna Magna/química , Cisterna Magna/efectos de los fármacos , Dependovirus/genética , Femenino , Vectores Genéticos/genética , Virus de la Hepatitis B de la Marmota , Masculino , Marmota , Ratas
16.
PLoS One ; 11(11): e0164202, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27802273

RESUMEN

Mesenchymal stem cells (MSCs) migrate to damaged tissues, where they participate in tissue repair. Human fetal MSCs (hfMSCs), compared with adult MSCs, have higher proliferation rates, a greater differentiation capacity and longer telomeres with reduced senescence. Therefore, transplantation of quality controlled hfMSCs is a promising therapeutic intervention. Previous studies have shown that intravenous or intracortical injections of MSCs result in the emergence of binucleated cerebellar Purkinje cells (PCs) containing an MSC-derived marker protein in mice, thus suggesting a fusion event. However, transdifferentiation of MSCs into PCs or transfer of a marker protein from an MSC to a PC cannot be ruled out. In this study, we unequivocally demonstrated the fusion of hfMSCs with murine PCs through a tetracycline-regulated (Tet-off) system with or without a Cre-dependent genetic inversion switch (flip-excision; FLEx). In the FLEx-Tet system, we performed intra-cerebellar injection of viral vectors expressing tetracycline transactivator (tTA) and Cre recombinase into either non-symptomatic (4-week-old) or clearly symptomatic (6-8-month-old) spinocerebellar ataxia type 1 (SCA1) mice. Then, the mice received an injection of 50,000 genetically engineered hfMSCs that expressed GFP only in the presence of Cre recombinase and tTA. We observed a significant emergence of GFP-expressing PCs and interneurons in symptomatic, but not non-symptomatic, SCA1 mice 2 weeks after the MSC injection. These results, together with the results obtained using age-matched wild-type mice, led us to conclude that hfMSCs have the potential to preferentially fuse with degenerating PCs and interneurons but not with healthy neurons.


Asunto(s)
Ataxina-1/metabolismo , Cerebelo/citología , Feto/citología , Células Madre Mesenquimatosas/citología , Neuronas/citología , Animales , Diferenciación Celular/fisiología , Transdiferenciación Celular/fisiología , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Células Madre Fetales/citología , Células Madre Fetales/metabolismo , Feto/metabolismo , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Células de Purkinje/citología , Células de Purkinje/metabolismo
17.
PLoS One ; 11(8): e0162023, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27571575

RESUMEN

Adeno-associated virus (AAV) vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb) were obtained by progressively deleting the original 2.0-kb promoter from the 5' end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength) and 0.2-kb (70% astrocyte specificity) promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity.


Asunto(s)
Encéfalo/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Regiones Promotoras Genéticas/genética , Animales , Callithrix , Cerebelo/metabolismo , Vectores Genéticos/genética , Células HEK293 , Humanos , Inmunohistoquímica , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL
18.
Brain Struct Funct ; 221(6): 2879-89, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26122696

RESUMEN

Retinoid-related orphan receptor α (RORα) is a critical master transcription factor that governs postnatal cerebellar development. An RORα-deficient cerebellum has a persistent external granular layer (EGL), rudimentary Purkinje cell (PC) dendrites, grossly reduced numbers of immature parallel fiber (PF)-PC synapses, and multiple climbing fibers (CF) innervating PCs in mice after 3 weeks of age when these features have disappeared in wild-type mice. Functionally, metabotropic glutamate receptor (mGluR)-mediated signaling in PCs is completely abrogated. Here we examined whether these defects could be corrected by lentivirally providing the RORα gene to 3-week-old PCs of RORα-deficient homozygous staggerer (sg/sg) mice. RORα expression in sg/sg PCs significantly increased the numbers of PF-PC synapses, spines on PC dendritic branchlets, and internal granule cells, concomitant with regression of the EGL, suggesting enhanced proliferation in the EGL and migration of post-mitotic progeny into the internal granular layer with augmented synaptogenesis between PFs and PC dendrites. However, the primary dendritic stems were only slightly extended, and mGluR signaling and the loss of redundant CF synapses in sg/sg PCs remained unrestored. These results suggest that the mitogenic and migratory potential of external granule cells in response to RORα was preserved in the >3-week-old sg/sg mouse cerebellum. Moreover, sg/sg PCs sprouted spines and formed synapses with PFs. However, lengthening of the primary dendritic stems, establishment of mGluR signaling, and removal of CF synapses in sg/sg PCs were regressed by 3 weeks of age.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Plasticidad Neuronal , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/fisiología , Células de Purkinje/fisiología , Animales , Cerebelo/citología , Dendritas/fisiología , Potenciales Postsinápticos Excitadores , Vectores Genéticos , Humanos , Lentivirus/fisiología , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Células de Purkinje/citología , Receptores de Glutamato Metabotrópico/fisiología , Sinapsis/fisiología
19.
Mol Cell Biol ; 35(9): 1557-72, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25713104

RESUMEN

Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K(+)-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation.


Asunto(s)
Locomoción , Memoria , Ratones/fisiología , Plasticidad Neuronal , Prosencéfalo/citología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Animales , Conducta Animal , Células Cultivadas , Regulación de la Expresión Génica , Genes Inmediatos-Precoces , Sistema de Señalización de MAP Quinasas , Masculino , Ratones/genética , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Prosencéfalo/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética
20.
J Neurosci Methods ; 223: 133-43, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24361760

RESUMEN

BACKGROUND: Certain inherited progressive neurodegenerative disorders, such as spinocerebellar ataxia (SCA), affect neurons in large areas of the central nervous system (CNS). The selective expression of disease-causing and therapeutic genes in susceptible regions and cell types is critical for the generation of animal models and development of gene therapies for these diseases. Previous studies have demonstrated the advantages of the short synapsin I (SynI) promoter (0.5 kb) as a neuron-specific promoter for robust transgene expression. However, the short SynI promoter has also shown some promoter activity in glia and a lack of transgene expression in significant areas of the CNS. New methods: To improve the SynI promoter, we used a SynI promoter that is twice as long (1.0 kb) as the short SynI promoter and incorporated a minimal CMV (minCMV) sequence. RESULTS: We observed that the 1.0 kb rat SynI promoter with minCMV [rSynI(1.0)-minCMV] exhibited robust promoter strength, excellent neuronal specificity and wide-ranging transgene expression throughout the CNS. Comparison with existing methods: Compared with the two previously reported short (0.5 kb) promoters, the new promoter was superior with respect to neuronal specificity and more efficiently transduced neurons. Moreover, transgenic mice expressing the mutant protein ATXN1[Q98], which causes SCA type 1 (SCA1), under the control of the rSynI(1.0)-minCMV promoter showed robust transgene expression specifically in neurons throughout the CNS and exhibited progressive ataxia. CONCLUSION: rSynI(1.0)-minCMV drives robust and neuron-specific transgene expression throughout the CNS and is therefore useful for viral vector-mediated neuron-specific gene delivery and generation of neuron-specific transgenic animals.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/genética , Regiones Promotoras Genéticas/genética , Sinapsinas/genética , Animales , Ataxina-1 , Ataxinas , Encéfalo/metabolismo , Encéfalo/patología , Decorina/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratas , Sinapsinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...