Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 12(41): 26744-26752, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36320843

RESUMEN

Cellulose-based fabrics are widely used in the preservation and storage of historic tapestries. Their ease of flammability is a serious concern that greatly limits their applications and requires the development of effective and safe flame-retardant treatments. In this work, we analysed linen and cotton textile samples before and after COEX® treatment, a patented green technology imparting anti-flame properties by functionalizing the cellulose molecules with phosphorus and sulphur groups. Some of the samples were also exposed to photo-induced ageing after the treatment. The resulting structural and chemical changes in both fibres were characterized by nonlinear optical imaging modalities, namely Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence microscopies (TPEF), and Raman and Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopies. Complementary results evidenced a reduction in microfibril crystallinity, attributed mainly to the reduction of hydrogen bonding among cellulose macromolecules, with a concomitant increase in fluorescence possibly due to the introduction of ester groups into cellulose chains and to decomposition of lignin into fluorescent by-products.

2.
Molecules ; 27(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35268575

RESUMEN

The non-invasive analysis of fluorescence from binders and pigments employed in mixtures in artworks is a major challenge in cultural heritage science due to the broad overlapping emission of different fluorescent species causing difficulties in the data interpretation. To improve the specificity of fluorescence measurements, we went beyond steady-state fluorescence measurements by resolving the fluorescence decay dynamics of the emitting species through time-resolved fluorescence imaging (TRFI). In particular, we acquired the fluorescence decay features of different pigments and binders using a portable and compact fibre-based imaging setup. Fluorescence time-resolved data were analysed using the phasor method followed by a Gaussian mixture model (GMM) to automatically identify the populations of fluorescent species within the fluorescence decay maps. Our results demonstrate that this approach allows distinguishing different binders when mixed with the same pigment as well as discriminating different pigments dispersed in a common binder. The results obtained could establish a framework for the analysis of a broader range of pigments and binders to be then extended to several other materials used in art production. The obtained results, together with the compactness and portability of the instrument, pave the way for future in situ applications of the technology on paintings.

3.
J Pathol Inform ; 13: 100012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223136

RESUMEN

Colorectal cancer presents one of the most elevated incidences of cancer worldwide. Colonoscopy relies on histopathology analysis of hematoxylin-eosin (H&E) images of the removed tissue. Novel techniques such as multi-photon microscopy (MPM) show promising results for performing real-time optical biopsies. However, clinicians are not used to this imaging modality and correlation between MPM and H&E information is not clear. The objective of this paper is to describe and make publicly available an extensive dataset of fully co-registered H&E and MPM images that allows the research community to analyze the relationship between MPM and H&E histopathological images and the effect of the semantic gap that prevents clinicians from correctly diagnosing MPM images. The dataset provides a fully scanned tissue images at 10x optical resolution (0.5 µm/px) from 50 samples of lesions obtained by colonoscopies and colectomies. Diagnostics capabilities of TPF and H&E images were compared. Additionally, TPF tiles were virtually stained into H&E images by means of a deep-learning model. A panel of 5 expert pathologists evaluated the different modalities into three classes (healthy, adenoma/hyperplastic, and adenocarcinoma). Results showed that the performance of the pathologists over MPM images was 65% of the H&E performance while the virtual staining method achieved 90%. MPM imaging can provide appropriate information for diagnosing colorectal cancer without the need for H&E staining. However, the existing semantic gap among modalities needs to be corrected.

4.
Tree Physiol ; 42(6): 1149-1163, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34918169

RESUMEN

Recent climate projections predict a more rapid increase of winter temperature than summer and global temperature averages in temperate and cold environments. As there is relatively little experimental knowledge on the effect of winter warming on cambium phenology and stem growth in species growing in cold environments, the setting of manipulative experiments is considered of primary importance, and they can help to decipher the effect of reduced winter chilling and increased forcing temperatures on cambium reactivation, growth and xylem traits. In this study, localized stem heating was applied to investigate the effect of warming from the rest to the growth phase on cambium phenology, intra-annual stem growth dynamics and ring wood features in Picea abies (L.) H.Karst. We hypothesized that reduced winter chilling induces a postponed cambium dormancy release and decrease of stem growth, while high temperature during cell wall lignification determines an enrichment of latewood-like cells. The heating device was designed to maintain a +5 °C temperature delta with respect to air temperature, thus allowing an authentic scenario of warming. Continuous stem heating from the rest (November) to the growing phase determined, at the beginning of radial growth, a reduction of the number of cell layers in the cambium, higher number of cell layers in the wall thickening phase and an asynchronous stem radial growth when comparing heated and ambient saplings. Nevertheless, heating did not induce changes in the number of produced cell layers at the end of the growing season. The analyses of two-photon fluorescence images showed that woody rings formed during heating were enriched with latewood-like cells. Our results showed that an increase of 5 °C of temperature applied to the stem from the rest to growth might not influence, as generally reported, onset of cambial activity, but it could affect xylem morphology of Norway spruce in mountain environments.


Asunto(s)
Picea , Biodiversidad , Cámbium , Calefacción , Picea/fisiología , Estaciones del Año , Temperatura , Madera , Xilema/fisiología
5.
J Pathol Inform ; 12: 27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447607

RESUMEN

BACKGROUND: Colorectal cancer has a high incidence rate worldwide, with over 1.8 million new cases and 880,792 deaths in 2018. Fortunately, its early detection significantly increases the survival rate, reaching a cure rate of 90% when diagnosed at a localized stage. Colonoscopy is the gold standard technique for detection and removal of colorectal lesions with potential to evolve into cancer. When polyps are found in a patient, the current procedure is their complete removal. However, in this process, gastroenterologists cannot assure complete resection and clean margins which are given by the histopathology analysis of the removed tissue, which is performed at laboratory. AIMS: In this paper, we demonstrate the capabilities of multiphoton microscopy (MPM) technology to provide imaging biomarkers that can be extracted by deep learning techniques to identify malignant neoplastic colon lesions and distinguish them from healthy, hyperplastic, or benign neoplastic tissue, without the need for histopathological staining. MATERIALS AND METHODS: To this end, we present a novel MPM public dataset containing 14,712 images obtained from 42 patients and grouped into 2 classes. A convolutional neural network is trained on this dataset and a spatially coherent predictions scheme is applied for performance improvement. RESULTS: We obtained a sensitivity of 0.8228 ± 0.1575 and a specificity of 0.9114 ± 0.0814 on detecting malignant neoplastic lesions. We also validated this approach to estimate the self-confidence of the network on its own predictions, obtaining a mean sensitivity of 0.8697 and a mean specificity of 0.9524 with the 18.67% of the images classified as uncertain. CONCLUSIONS: This work lays the foundations for performing in vivo optical colon biopsies by combining this novel imaging technology together with deep learning algorithms, hence avoiding unnecessary polyp resection and allowing in situ diagnosis assessment.

6.
Data Brief ; 29: 105223, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32090158

RESUMEN

The distribution of chemical species and the mechanical modulation inside a single cell or tissue are of fundamental importance to characterize their physiological activity or their pathological conditions [1-4]. Here we analyse these properties by means of label free, non invasive, spectroscopic methods. In particular, we use a recently developed micro-spectrometer, which acquires simultaneously Raman and Brillouin spectra on the same point with subcellular resolution [5]. The techniques ability to analyse the chemical composition and the mechanical properties of single cells has been tested on NIH/3T3 murine fibroblast cells grown in adhesion on silicon substrates. Here we report the data acquired from fixed cells after their oncogenic transformation. Mechanical and chemical evolution is evident by direct inspection of raw data. Sharing our experimental records can be valuable for researchers interested in the analysis of single cells by Raman and Brillouin spectroscopy in order: i) to compare data acquired by different set-ups and ii) to correctly model the fitting functions.

7.
Commun Biol ; 2: 117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30937399

RESUMEN

In every biological tissue, morphological and topological properties strongly affect its mechanical features and behaviour, so that ultrastructure, composition and mechanical parameters are intimately connected. Overall, it is their correct interplay that guarantees the tissue functionality. The development of experimental methods able to correlate these properties would open new opportunities both in the biological and the biomedical fields. Here, we report a correlative study intended to map supramolecular morphology, biochemical composition and viscoelastic parameters of collagen by all-optical microscopies. In particular, using human corneal tissue as a benchmark, we correlate Second-Harmonic Generation maps with mechanical and biochemical imaging obtained by Brillouin and Raman micro-spectroscopy. The study highlights how subtle variations in supramolecular organization originate the peculiar mechanical behavior of different subtypes of corneal lamellae. The presented methodology paves the way to the non-invasive assessment of tissue morpho-mechanics in biological as well as synthetic materials.


Asunto(s)
Colágeno/química , Epitelio Corneal/diagnóstico por imagen , Microscopía Confocal/métodos , Espectrometría Raman/métodos , Módulo de Elasticidad/fisiología , Elasticidad/fisiología , Humanos , Modelos Teóricos , Sustancias Viscoelásticas/química , Viscosidad
8.
Analyst ; 143(24): 6095-6102, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30460364

RESUMEN

A recent investigation on the architecture and chemical composition of amyloid-ß (Aß) plaques in ex vivo histological sections of an Aß-overexpressing transgenic mouse hippocampus has shed light on the infrared light signature of cell-activation related biomarkers of Alzheimer's disease. A correlation was highlighted between the biomechanical properties detected by Brillouin microscopy and the molecular make-up of Aß plaques provided by FTIR spectroscopic imaging and Raman microscopy (with correlative immunofluorescence imaging) in this animal model of the disease. In the Brillouin spectra of heterogeneous materials such as biomedical samples, peaks are likely the result of multiple contributions, more or less overlaid on a spatial and spectral scale. The ability to disentangle these contributions is very important as it may give access to discrete components that would otherwise be buried within the Brillouin peak envelope. Here, we applied an unsupervised non-negative matrix factorization method to analyse the spontaneous Brillouin microscopy maps of Aß plaques in transgenic mouse hippocampal sections. The method has already been proven successful in decomposing chemical images and is applied here for the first time to acoustic maps acquired with a Fabry-Perot Brillouin microscope. We extracted and visualised a decrease in tissue rigidity from the core through to the periphery of the plaque, with spatially distinct components that we assigned to specific entities. This work demonstrates that it is possible to reveal the structure and mechanical properties of Aß plaques, with details visualized by the projection of the mechanical contrast into a few relevant channels.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Hipocampo/patología , Microscopía Confocal/métodos , Placa Amiloide/química , Algoritmos , Animales , Elasticidad , Masculino , Ratones Transgénicos , Viscosidad
9.
Infect Dis Ther ; 7(Suppl 1): 27-34, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29549654

RESUMEN

Medical and environmental microbiology have two distinct, although very short, histories stemming, the first from the pioneering works of Sommelweiss, Pasteur, Lister and Koch, the second mainly from the studies of Bejerink and Winogradsky. These two branches of microbiology evolved and specialized separately producing distinct communities and evolving rather different approaches and techniques. The evidence accumulated in recent decades indicate that indeed most of the medically relevant microorganisms have a short circulation within the nosocomial environment and a larger one involving the external, i.e. non-nosocomial, and the hospital environments. This evidence suggests that the differences between approaches should yield to a convergent approach aimed at solving the increasing problem represented by infectious diseases for the increasingly less resistant human communities. Microbial biofilm is one of the major systems used by these microbes to resist the harsh conditions of the natural and anthropic environment, and the even worse ones related to medical settings. This paper presents a brief outline of the converging interest of both environmental and medical microbiology toward a better understanding of microbial biofilm and of the various innovative techniques that can be employed to characterize, in a timely and quantitative manner, these complex structures. Among these, micro-Raman along with micro-Brillouin offer high hopes of describing biofilms both at the subcellular and supercellular level, with the possibility of characterizing the various landscapes of the different biofilms. The possibility of adding a taxonomic identification of the cells comprising the biofilm is a complex aspect presenting several technical issues that will require further studies in the years to come.

10.
Analyst ; 143(4): 850-857, 2018 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-29230441

RESUMEN

Recent work using micro-Fourier transform infrared (µFTIR) imaging has revealed that a lipid-rich layer surrounds many plaques in post-mortem Alzheimer's brain. However, the origin of this lipid layer is not known, nor is its role in the pathogenesis of Alzheimer's disease (AD). Here, we studied the biochemistry of plaques in situ using a model of AD. We combined FTIR, Raman and immunofluorescence images, showing that astrocyte processes co-localise with the lipid ring surrounding many plaques. We used µFTIR imaging to rapidly measure chemical signatures of plaques over large fields of view, and selected plaques for higher resolution analysis with Raman microscopy. Raman maps showed similar lipid rings and dense protein cores as in FTIR images, but also revealed cell bodies. We confirmed the presence of plaques using amylo-glo staining, and detected astrocytes using immunohistochemistry, revealing astrocyte co-localisation with lipid rings. This work is important because it correlates biochemical changes surrounding the plaque with the biological process of astrogliosis.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Lípidos/análisis , Placa Amiloide/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Animales , Encéfalo/diagnóstico por imagen , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Espectroscopía Infrarroja por Transformada de Fourier
11.
Light Sci Appl ; 7: 17139, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839528

RESUMEN

Innovative label-free microspectroscopy, which can simultaneously collect Brillouin and Raman signals, is used to characterize the viscoelastic properties and chemical composition of living cells with sub-micrometric resolution. The unprecedented statistical accuracy of the data combined with the high-frequency resolution and the high contrast of the recently built experimental setup permits the study of single living cells immersed in their buffer solution by contactless measurements. The Brillouin signal is deconvoluted in the buffer and the cell components, thereby revealing the mechanical heterogeneity inside the cell. In particular, a 20% increase is observed in the elastic modulus passing from the plasmatic membrane to the nucleus as distinguished by comparison with the Raman spectroscopic marker. Brillouin line shape analysis is even more relevant for the comparison of cells under physiological and pathological conditions. Following oncogene expression, cells show an overall reduction in the elastic modulus (15%) and apparent viscosity (50%). In a proof-of-principle experiment, the ability of this spectroscopic technique to characterize subcellular compartments and distinguish cell status was successfully tested. The results strongly support the future application of this technique for fundamental issues in the biomedical field.

12.
J Innov Opt Health Sci ; 10(6)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29151920

RESUMEN

Amyloidopathy is one of the most prominent hallmarks of Alzheimer's disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, ß-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a ß-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of ß-pleated sheet conformation (ß-amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.

13.
J Vis Exp ; (115)2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27684584

RESUMEN

Brillouin spectroscopy is an emerging technique in the biomedical field. It probes the mechanical properties of a sample through the interaction of visible light with thermally induced acoustic waves or phonons propagating at a speed of a few km/sec. Information on the elasticity and structure of the material is obtained in a nondestructive contactless manner, hence opening the way to in vivo applications and potential diagnosis of pathology. This work describes the application of Brillouin spectroscopy to the study of biomechanics in elastin and trypsin-digested type I collagen fibers of the extracellular matrix. Fibrous proteins of the extracellular matrix are the building blocks of biological tissues and investigating their mechanical and physical behavior is key to establishing structure-function relationships in normal tissues and the changes which occur in disease. The procedures of sample preparation followed by measurement of Brillouin spectra using a reflective substrate are presented together with details of the optical system and methods of spectral data analysis.


Asunto(s)
Proteínas de la Matriz Extracelular , Análisis Espectral , Fenómenos Biomecánicos , Elasticidad , Elastina , Matriz Extracelular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA