Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
PLoS Genet ; 19(2): e1010639, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36749784

RESUMEN

The bypass of DNA lesions that block replicative polymerases during DNA replication relies on DNA damage tolerance pathways. The error-prone translesion synthesis (TLS) pathway depends on specialized DNA polymerases that incorporate nucleotides in front of base lesions, potentially inducing mutagenesis. Two error-free pathways can bypass the lesions: the template switching pathway, which uses the sister chromatid as a template, and the homologous recombination pathway (HR), which also can use the homologous chromosome as template. The balance between error-prone and error-free pathways controls the mutagenesis level. Therefore, it is crucial to precisely characterize factors that influence the pathway choice to better understand genetic stability at replication forks. In yeast, the complex formed by the Rad51 paralogs Rad55 and Rad57 promotes HR and template-switching at stalled replication forks. At DNA double-strand breaks (DSBs), this complex promotes Rad51 filament formation and stability, notably by counteracting the Srs2 anti-recombinase. To explore the role of the Rad55-Rad57 complex in error-free pathways, we monitored the genetic interactions between Rad55-Rad57, the translesion polymerases Polζ or Polη, and Srs2 following UV radiation that induces mostly single-strand DNA gaps. We found that the Rad55-Rad57 complex was involved in three ways. First, it protects Rad51 filaments from Srs2, as it does at DSBs. Second, it promotes Rad51 filament stability independently of Srs2. Finally, we observed that UV-induced HR is almost abolished in Rad55-Rad57 deficient cells, and is partially restored upon Polζ or Polη depletion. Hence, we propose that the Rad55-Rad57 complex is essential to promote Rad51 filament stability on single-strand DNA gaps, notably to counteract the error-prone TLS polymerases and mutagenesis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/genética , ADN/metabolismo , Daño del ADN/genética , ADN Helicasas/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Rayos Ultravioleta
2.
Nat Struct Mol Biol ; 26(8): 744-754, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31384063

RESUMEN

Precise nucleosome organization at eukaryotic promoters is thought to be generated by multiple chromatin remodeler (CR) enzymes and to affect transcription initiation. Using an integrated analysis of chromatin remodeler binding and nucleosome occupancy following rapid remodeler depletion, we investigated the interplay between these enzymes and their impact on transcription in yeast. We show that many promoters are affected by multiple CRs that operate in concert or in opposition to position the key transcription start site (TSS)-associated +1 nucleosome. We also show that nucleosome movement after CR inactivation usually results from the activity of another CR and that in the absence of any remodeling activity, +1 nucleosomes largely maintain their positions. Finally, we present functional assays suggesting that +1 nucleosome positioning often reflects a trade-off between maximizing RNA polymerase recruitment and minimizing transcription initiation at incorrect sites. Our results provide a detailed picture of fundamental mechanisms linking promoter nucleosome architecture to transcription initiation.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética/fisiología , Ensamble y Desensamble de Cromatina/genética , ADN de Hongos/genética , ADN Intergénico/genética , ADN Intergénico/metabolismo , Sustancias Macromoleculares/metabolismo , Nucleasa Microcócica/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nat Commun ; 10(1): 2535, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182712

RESUMEN

Rif1 is involved in telomere homeostasis, DNA replication timing, and DNA double-strand break (DSB) repair pathway choice from yeast to human. The molecular mechanisms that enable Rif1 to fulfill its diverse roles remain to be determined. Here, we demonstrate that Rif1 is S-acylated within its conserved N-terminal domain at cysteine residues C466 and C473 by the DHHC family palmitoyl acyltransferase Pfa4. Rif1 S-acylation facilitates the accumulation of Rif1 at DSBs, the attenuation of DNA end-resection, and DSB repair by non-homologous end-joining (NHEJ). These findings identify S-acylation as a posttranslational modification regulating DNA repair. S-acylated Rif1 mounts a localized DNA-damage response proximal to the inner nuclear membrane, revealing a mechanism of compartmentalized DSB repair pathway choice by sequestration of a fatty acylated repair factor at the inner nuclear membrane.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/genética , Acilación , Reparación del ADN , Membrana Nuclear/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo
4.
Genes Dev ; 33(5-6): 288-293, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30804227

RESUMEN

The yeast Sfp1 protein regulates both cell division and growth but how it coordinates these processes is poorly understood. We demonstrate that Sfp1 directly controls genes required for ribosome production and many other growth-promoting processes. Remarkably, the complete set of Sfp1 target genes is revealed only by a combination of ChIP (chromatin immunoprecipitation) and ChEC (chromatin endogenous cleavage) methods, which uncover two promoter binding modes, one requiring a cofactor and the other a DNA-recognition motif. Glucose-regulated Sfp1 binding at cell cycle "START" genes suggests that Sfp1 controls cell size by coordinating expression of genes implicated in mass accumulation and cell division.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Regiones Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Glucosa/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , Regulón/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Curr Genet ; 65(2): 429-434, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30456647

RESUMEN

In buddying yeast, like all eukaryotes examined so far, DNA replication is under temporal control, such that some origins fire early and some late during S phase. This replication timing program is established in G1 phase, where chromatin states are thought to prevent binding of key-limiting initiation factors at late-firing origins. Although many factors are involved in replication initiation, a new player, Rif1, has recently entered the scene, with a spate of papers revealing a global role for the protein in the control of replication initiation timing from yeasts to humans. Since budding yeast Rif1 was known to bind only to telomeric and silent mating loci regions, it remained controversial whether Rif1 acts directly at replication origins or instead influences origin activity indirectly. In this perspective, we discuss our recent finding that Rif1 binds directly to the replication origins that it controls. In this study, we also found that Rif1's regulatory activity at origins is best revealed by an assay (sort-seq) that measures replication in unperturbed, freely cycling cultures, as opposed to commonly used protocols in which cells are first blocked in the G1 phase of the cell cycle by mating pheromone, then released into a synchronous S phase. Finally, we discuss how the sequestration of Rif1 at telomeres, through an interaction with the arrays of Rap1 molecules bound there, plays an important role in limiting Rif1's action primarily to telomere-proximal replication origins.


Asunto(s)
Ciclo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Replicación del ADN , Origen de Réplica , Telómero/genética , Telómero/metabolismo
6.
Mol Cell ; 71(1): 89-102.e5, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29979971

RESUMEN

Accessible chromatin is important for RNA polymerase II recruitment and transcription initiation at eukaryotic promoters. We investigated the mechanistic links between promoter DNA sequence, nucleosome positioning, and transcription. Our results indicate that positioning of the transcription start site-associated +1 nucleosome in yeast is critical for efficient TBP binding and is driven by two key factors, the essential chromatin remodeler RSC and a small set of ubiquitous general regulatory factors (GRFs). Our findings indicate that the strength and directionality of RSC action on promoter nucleosomes depends on the arrangement and proximity of two specific DNA motifs. This, together with the effect on nucleosome position observed in double depletion experiments, suggests that, despite their widespread co-localization, RSC and GRFs predominantly act through independent signals to generate accessible chromatin. Our results provide mechanistic insight into how the promoter DNA sequence instructs trans-acting factors to control nucleosome architecture and stimulate transcription initiation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Nucleosomas/genética , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Cell Rep ; 23(4): 983-992, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29694906

RESUMEN

The Saccharomyces cerevisiae telomere-binding protein Rif1 plays an evolutionarily conserved role in control of DNA replication timing by promoting PP1-dependent dephosphorylation of replication initiation factors. However, ScRif1 binding outside of telomeres has never been detected, and it has thus been unclear whether Rif1 acts directly on the replication origins that it controls. Here, we show that, in unperturbed yeast cells, Rif1 primarily regulates late-replicating origins within 100 kb of a telomere. Using the chromatin endogenous cleavage ChEC-seq technique, we robustly detect Rif1 at late-replicating origins that we show are targets of its inhibitory action. Interestingly, abrogation of Rif1 telomere association by mutation of its Rap1-binding module increases Rif1 binding and origin inhibition elsewhere in the genome. Our results indicate that Rif1 inhibits replication initiation by interacting directly with origins and suggest that Rap1-dependent sequestration of Rif1 increases its effective concentration near telomeres, while limiting its action at chromosome-internal sites.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Origen de Réplica/fisiología , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Cromosomas Fúngicos/genética , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telómero/genética , Proteínas de Unión a Telómeros/genética
8.
Nat Struct Mol Biol ; 24(7): 588-595, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28604726

RESUMEN

In yeast, Rif1 is part of the telosome, where it inhibits telomerase and checkpoint signaling at chromosome ends. In mammalian cells, Rif1 is not telomeric, but it suppresses DNA end resection at chromosomal breaks, promoting repair by nonhomologous end joining (NHEJ). Here, we describe crystal structures for the uncharacterized and conserved ∼125-kDa N-terminal domain of Rif1 from Saccharomyces cerevisiae (Rif1-NTD), revealing an α-helical fold shaped like a shepherd's crook. We identify a high-affinity DNA-binding site in the Rif1-NTD that fully encases DNA as a head-to-tail dimer. Engagement of the Rif1-NTD with telomeres proved essential for checkpoint control and telomere length regulation. Unexpectedly, Rif1-NTD also promoted NHEJ at DNA breaks in yeast, revealing a conserved role of Rif1 in DNA repair. We propose that tight associations between the Rif1-NTD and DNA gate access of processing factors to DNA ends, enabling Rif1 to mediate diverse telomere maintenance and DNA repair functions.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ADN/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/enzimología
9.
PLoS Genet ; 12(11): e1006414, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27820830

RESUMEN

The Rif1 protein is a negative regulator of DNA replication initiation in eukaryotes. Here we show that budding yeast Rif1 inhibits DNA replication initiation at the rDNA locus. Absence of Rif1, or disruption of its interaction with PP1/Glc7 phosphatase, leads to more intensive rDNA replication. The effect of Rif1-Glc7 on rDNA replication is similar to that of the Sir2 deacetylase, and the two would appear to act in the same pathway, since the rif1Δ sir2Δ double mutant shows no further increase in rDNA replication. Loss of Rif1-Glc7 activity is also accompanied by an increase in rDNA repeat instability that again is not additive with the effect of sir2Δ. We find, in addition, that the viability of rif1Δ cells is severely compromised in combination with disruption of the MRX or Ctf4-Mms22 complexes, both of which are implicated in stabilization of stalled replication forks. Significantly, we show that removal of the rDNA replication fork barrier (RFB) protein Fob1, alleviation of replisome pausing by deletion of the Tof1/Csm3 complex, or a large deletion of the rDNA repeat array all rescue this synthetic growth defect of rif1Δ cells lacking in addition either MRX or Ctf4-Mms22 activity. These data suggest that the repression of origin activation by Rif1-Glc7 is important to avoid the deleterious accumulation of stalled replication forks at the rDNA RFB, which become lethal when fork stability is compromised. Finally, we show that Rif1-Glc7, unlike Sir2, has an important effect on origin firing outside of the rDNA locus that serves to prevent activation of the DNA replication checkpoint. Our results thus provide insights into a mechanism of replication control within a large repetitive chromosomal domain and its importance for the maintenance of genome stability. These findings may have important implications for metazoans, where large blocks of repetitive sequences are much more common.


Asunto(s)
Replicación del ADN/genética , ADN Ribosómico/genética , Proteína Fosfatasa 1/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica , Origen de Réplica/genética , Saccharomyces cerevisiae , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Telómero/genética
10.
Front Genet ; 7: 45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27066066

RESUMEN

Rap1-interacting factor 1 (Rif1) was originally identified in the budding yeast Saccharomyces cerevisiae as a telomere-binding protein that negatively regulates telomerase-mediated telomere elongation. Although this function is conserved in the distantly related fission yeast Schizosaccharomyces pombe, recent studies, both in yeasts and in metazoans, reveal that Rif1 also functions more globally, both in the temporal control of DNA replication and in DNA repair. Rif1 proteins are large and characterized by N-terminal HEAT repeats, predicted to form an elongated alpha-helical structure. In addition, all Rif1 homologs contain two short motifs, abbreviated RVxF/SILK, that are implicated in recruitment of the PP1 (yeast Glc7) phosphatase. In yeasts the RVxF/SILK domains have been shown to play a role in control of DNA replication initiation, at least in part through targeted de-phosphorylation of proteins in the pre-Replication Complex. In human cells Rif1 is recruited to DNA double-strand breaks through an interaction with 53BP1 where it counteracts DNA resection, thus promoting repair by non-homologous end-joining. This function requires the N-terminal HEAT repeat-containing domain. Interestingly, this domain is also implicated in DNA end protection at un-capped telomeres in yeast. We conclude by discussing the deployment of Rif1 at telomeres in yeasts from both an evolutionary perspective and in light of its recently discovered global functions.

11.
J Exp Clin Cancer Res ; 34: 140, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26576645

RESUMEN

BACKGROUND: Hepatitis C Virus (HCV) infection is associated with chronically evolving disease and development of hepatocellular carcinoma (HCC), albeit the mechanism of HCC induction by HCV is still controversial. The nucleocapsid (core) protein of HCV has been shown to be directly implicated in cellular transformation and immortalization, enhancing the effect of oncogenes and decreasing the one of tumor suppressor genes, as RB1 and its protein product pRB. With the aim of identifying novel molecular mechanisms of hepatocyte transformation by HCV, we examined the effect of HCV core protein on the expression of the whole Retinoblastoma (RB) family of tumor and growth suppressor factors, i.e. pRb, p107 and pRb2/p130. METHODS: We used a model system consisting of the HuH-7, HCV-free, human hepatocellular carcinoma cell line and of the HuH-7-CORE cells derived from the former and constitutively expressing the HCV core protein. We determined pRb, p107 and pRb2/p130 protein and mRNA amount of the respective genes RB1, RBL1 and RBL2, RBL2 promoter activity and methylation as well as DNA methyltransferase 1 (DNMT1) and 3b (DNMT3b) expression level. The effect of pRb2/p130 over-expression on the HCV core-expressing HuH-7-CORE cells was also evaluated. RESULTS: We found that the HCV core protein expression down-regulated pRb2/p130 protein and mRNA levels in HuH-7-CORE cells by inducing promoter hyper-methylation with the concomitant up-regulation of DNMT1 and DNMT3b expression. When pRb2/p130 expression was artificially re-established in HuH-7-CORE cells, cell cycle analysis outlined an accumulation in the G0/G1 phase, as expected. CONCLUSIONS: HCV core appears indeed able to significantly down-regulate the expression and the function of two out of three RB family tumor and growth suppressor factors, i.e. pRb and pRb2/p130. The functional consequences at the level of cell cycle regulation, and possibly of more complex cell homeostatic processes, may represent a plausible molecular mechanism involved in liver transformation by HCV.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Antígenos de la Hepatitis C/metabolismo , Regiones Promotoras Genéticas , Proteína p130 Similar a la del Retinoblastoma/genética , Proteínas del Núcleo Viral/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Islas de CpG , Epigénesis Genética , Expresión Génica , Silenciador del Gen , Antígenos de la Hepatitis C/genética , Humanos , Espacio Intracelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Familia de Multigenes , Transporte de Proteínas , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Proteínas del Núcleo Viral/genética
12.
Cell Rep ; 7(1): 62-9, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24685139

RESUMEN

The Rif1 protein, originally identified as a telomere-binding factor in yeast, has recently been implicated in DNA replication control from yeast to metazoans. Here, we show that budding yeast Rif1 protein inhibits activation of prereplication complexes (pre-RCs). This inhibitory function requires two N-terminal motifs, RVxF and SILK, associated with recruitment of PP1 phosphatase (Glc7). In G1 phase, we show both that Glc7 interacts with Rif1 in an RVxF/SILK-dependent manner and that two proteins implicated in pre-RC activation, Mcm4 and Sld3, display increased Dbf4-dependent kinase (DDK) phosphorylation in rif1 mutants. Rif1 also interacts with Dbf4 in yeast two-hybrid assays, further implicating this protein in direct modulation of pre-RC activation through the DDK. Finally, we demonstrate Rif1 RVxF/SILK motif-dependent recruitment of Glc7 to telomeres and earlier replication of these regions in cells where the motifs are mutated. Our data thus link Rif1 to negative regulation of replication origin firing through recruitment of the Glc7 phosphatase.


Asunto(s)
Replicación del ADN/fisiología , Proteína Fosfatasa 1/metabolismo , Origen de Réplica/fisiología , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética
13.
J Cell Physiol ; 229(4): 463-70, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24105779

RESUMEN

Cervical carcinoma represents the paradigm of virus-induced cancers, where virtually all cervical cancers come from previous "high-risk" HPV infection. The persistent expression of the HPV viral oncoproteins E6 and E7 is responsible for the reprogramming of fundamental cellular functions in the host cell, thus generating a noticeable, yet only partially explored, imbalance in protein molecular networks and cell signaling pathways. Eighty-eight cellular factors, identified as HPV direct or surrogate targets, were chosen and monitored in a retrospective analysis for their mRNA expression in HPV-induced cervical lesions, from dysplasia to cancer. Real-time quantitative PCR (qPCR) was performed by using formalin-fixed, paraffin embedded archival samples. Gene expression analysis identified 40 genes significantly modulated in LSIL, HSIL, and squamous cervical carcinoma. Interestingly, among these, the expression level of a panel of four genes, TOP2A, CTNNB1, PFKM, and GSN, was able to distinguish between normal tissues and cervical carcinomas. Immunohistochemistry was also done to assess protein expression of two genes among those up-regulated during the transition between dysplasia and carcinoma, namely E2F1 and CDC25A, and their correlation with clinical parameters. Besides the possibility of significantly enhancing the use of some of these factors in diagnostic or prognostic procedures, these data clearly outline specific pathways, and thus key biological processes, altered in cervical dysplasia and carcinoma. Deeper insight on how these molecular mechanisms work may help widen the spectrum of novel innovative approaches to these virus-induced cell pathologies.


Asunto(s)
Carcinoma/metabolismo , Carcinoma/virología , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/virología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/virología , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Infecciones por Papillomavirus/metabolismo , ARN Viral/aislamiento & purificación , Factor de Transcripción STAT1 , Transcriptoma , Regulación hacia Arriba
14.
Carcinogenesis ; 34(10): 2424-33, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23729654

RESUMEN

The oncoprotein E7 from human papillomavirus-16 (HPV-16 E7) plays a pivotal role in HPV postinfective carcinogenesis, and its physical interaction with host cell targets is essential to its activity. We identified a novel cellular partner for the viral oncoprotein: the actin-binding protein gelsolin (GSN), a key regulator of actin filament assembly and disassembly. In fact, biochemical analyses, generation of a 3D molecular interaction model and the use of specific HPV-16 E7 mutants provided clear cut evidence supporting the crucial role of HPV-16 E7 in affecting GSN integrity and function in human immortalized keratinocytes. Accordingly, functional analyses clearly suggested that stable HPV-16 E7 expression induced an imbalance between polymeric and monomeric actin in favor of the former. These events also lead to changes of cell cycle (increased S phase), to the inhibition of apoptosis and to the increase of cell survival. These results provide support to the hypotheses generated from the 3D molecular interaction model and encourage the design of small molecules hindering HPV-induced host cell reprogramming by specifically targeting HPV-16 E7-expressing cells.


Asunto(s)
Apoptosis , Gelsolina/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Actinas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Caspasa 3/metabolismo , Línea Celular Tumoral , Gelsolina/química , Humanos , Simulación del Acoplamiento Molecular , Mutación , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas
15.
Cell ; 153(6): 1340-53, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746845

RESUMEN

Yeast telomeres comprise irregular TG1₋3 DNA repeats bound by the general transcription factor Rap1. Rif1 and Rif2, along with Rap1, form the telosome, a protective cap that inhibits telomerase, counteracts SIR-mediated transcriptional silencing, and prevents inadvertent recognition of telomeres as DNA double-strand breaks. We provide a molecular, biochemical, and functional dissection of the protein backbone at the core of the yeast telosome. The X-ray structures of Rif1 and Rif2 bound to the Rap1 C-terminal domain and that of the Rif1 C terminus are presented. Both Rif1 and Rif2 have separable and independent Rap1-binding epitopes, allowing Rap1 binding over large distances (42-110 Å). We identify tetramerization (Rif1) and polymerization (Rif2) modules that, in conjunction with the long-range binding, give rise to a higher-order architecture that interlinks Rap1 units. This molecular Velcro relies on Rif1 and Rif2 to recruit and stabilize Rap1 on telomeric arrays and is required for telomere homeostasis in vivo.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Mapas de Interacción de Proteínas , Alineación de Secuencia , Complejo Shelterina
16.
Nucleic Acids Res ; 41(13): 6490-500, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23677619

RESUMEN

Vertebrate-like T2AG3 telomeres in tlc1-h yeast consist of short double-stranded regions and long single-stranded overhang (G-tails) and, although based on Tbf1-capping activity, they are capping deficient. Consistent with this idea, we observe Y' amplification because of homologous recombination, even in the presence of an active telomerase. In these cells, Y' amplification occurs by different pathways: in Tel1(+) tlc1h cells, it is Rad51-dependent, whereas in the absence of Tel1, it depends on Rad50. Generation of telomeric G-tail, which is cell cycle regulated, depends on the MRX (Mre11-Rad50-Xrs2) complex in tlc1h cells or is MRX-independent in tlc1h tel1Δ mutants. Unexpectedly, we observe telomere elongation in tlc1h lacking Rad51 that seems to act as a telomerase competitor for binding to telomeric G-tails. Overall, our results show that Tel1 and Rad51 have multiple roles in the maintenance of vertebrate-like telomeres in yeast, supporting the idea that they may participate to evolutionary conserved telomere protection mechanism/s acting at uncapped telomeres.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Recombinasa Rad51/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Homeostasis del Telómero , Telómero/metabolismo , Proteínas de Unión al ADN/genética , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Recombinasa Rad51/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/antagonistas & inhibidores
17.
CMAJ ; 184(11): E602-12, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22641686

RESUMEN

BACKGROUND: Many academic medical centres have introduced strategies to assess the productivity of faculty as part of compensation schemes. We conducted a systematic review of the effects of such strategies on faculty productivity. METHODS: We searched the MEDLINE, Healthstar, Embase and PsycInfo databases from their date of inception up to October 2011. We included studies that assessed academic productivity in clinical, research, teaching and administrative activities, as well as compensation, promotion processes and satisfaction. RESULTS: Of 531 full-text articles assessed for eligibility, we included 9 articles reporting on eight studies. The introduction of strategies for assessing academic productivity as part of compensation schemes resulted in increases in clinical productivity (in six of six studies) in terms of clinical revenue, the work component of relative-value units (these units are nonmonetary standard units of measure used to indicate the value of services provided), patient satisfaction and other departmentally used standards. Increases in research productivity were noted (in five of six studies) in terms of funding and publications. There was no change in teaching productivity (in two of five studies) in terms of educational output. Such strategies also resulted in increases in compensation at both individual and group levels (in three studies), with two studies reporting a change in distribution of compensation in favour of junior faculty. None of the studies assessed effects on administrative productivity or promotion processes. The overall quality of evidence was low. INTERPRETATION: Strategies introduced to assess productivity as part of a compensation scheme appeared to improve productivity in research activities and possibly improved clinical productivity, but they had no effect in the area of teaching. Compensation increased at both group and individual levels, particularly among junior faculty. Higher quality evidence about the benefits and harms of such assessment strategies is needed.


Asunto(s)
Centros Médicos Académicos/economía , Compensación y Reparación , Eficiencia , Docentes Médicos , Centros Médicos Académicos/organización & administración , Movilidad Laboral , Humanos , Estados Unidos
18.
J Exp Clin Cancer Res ; 31: 4, 2012 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-22240294

RESUMEN

BACKGROUND: Lung cancer represents the most frequent cause of death for cancer. In non-small cell lung cancer (NSCLC), which accounts for the vast majority of this disease, only early detection and treatment, when possible, may significantly affect patient's prognosis. An important role in NSCLC malignancy is attributed to the signal transduction pathways involving PI3Kinase, with consequent activation of the AKT family factors. The serum and glucocorticoid kinase (SGK) factors, which share high structural and functional homologies with the AKT factors, are a family of ubiquitously expressed serine/threonine kinases under the control of cellular stress and hormones. SGK1 is the most represented SGK member. METHODS: By means of immunohistochemistry and quantitative real-time PCR, we determined SGK1 protein and mRNA expression in a cohort of 66 formalin-fixed, paraffin-embedded NSCLC surgical samples. All samples belonged to patients with a well-documented clinical history. RESULTS: mRNA expression was significantly higher in squamous cell carcinomas, and correlated with several clinical prognostic indicators, being elevated in high-grade tumors and in tumors with bigger size and worse clinical stage. No correlation was found between SGK1 protein expression and these clinical parameters. CONCLUSIONS: This explorative analysis of SGK1 expression in NSCLC samples highlights the potential role of this factor in NSCLC patients' prognosis. Moreover, the higher expression in the squamous cell carcinoma subtype opens new therapeutic possibilities in this NSCLC subtype by designing specific kinase inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Anciano , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Inmediatas-Precoces/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
19.
Mech Ageing Dev ; 132(1-2): 27-32, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21126532

RESUMEN

After extended proliferation, cells enter a state of replicative quiescence that is probably due to progressive telomere shortening. It is supposed that changes in telomere structure eventually expose the chromosome ends to undesired recombination events and thus promote cell senescence. The telomeric 3'-overhang is crucial for efficient chromosome capping, but its specific role in telomere shortening and in triggering the senescence program is uncertain. We have addressed this issue by measuring the 3'-overhangs of a human tissue cells aging in vivo. The 3'-overhangs were analyzed in blood samples from 41 individuals aged 91-106 years and 89 individuals ranging from 6 months to 85 years. We found that the overall 3'-overhang length did not significantly change with age, but did, however, find extensively eroded 3'-overhangs in 3 subjects of the 91-106 years cohort and one 61 years old subject affected with Down syndrome. These subjects had 3'-overhang length distributions skewed towards shorter tails, the shortest overall telomere lengths and the highest frequencies of very short telomeres. These data raise the possibility that during ageing very short telomeres with very poor 3'-overhangs can reach a critical point for functional telomeres.


Asunto(s)
Envejecimiento/sangre , Envejecimiento/genética , Leucocitos/metabolismo , Leucocitos/patología , Telómero/genética , Telómero/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Secuencia de Bases , Proliferación Celular , Senescencia Celular/genética , Niño , Preescolar , ADN/sangre , ADN/genética , Sondas de ADN/genética , Humanos , Lactante , Persona de Mediana Edad , Secuencias Repetidas en Tándem , Adulto Joven
20.
PLoS One ; 4(10): e7254, 2009 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-19826491

RESUMEN

BACKGROUND: Human Papillomavirus (HPV)-16 is a paradigm for "high-risk" HPVs, the causative agents of virtually all cervical carcinomas. HPV E6 and E7 viral genes are usually expressed in these tumors, suggesting key roles for their gene products, the E6 and E7 oncoproteins, in inducing malignant transformation. METHODOLOGY/PRINCIPAL FINDINGS: By protein-protein interaction analysis, using mass spectrometry, we identified glutathione S-transferase P1-1 (GSTP1) as a novel cellular partner of the HPV-16 E7 oncoprotein. Following mapping of the region in the HPV-16 E7 sequence that is involved in the interaction, we generated a three-dimensional molecular model of the complex between HPV-16 E7 and GSTP1, and used this to engineer a mutant molecule of HPV-16 E7 with strongly reduced affinity for GSTP1.When expressed in HaCaT human keratinocytes, HPV-16 E7 modified the equilibrium between the oxidized and reduced forms of GSTP1, thereby inhibiting JNK phosphorylation and its ability to induce apoptosis. Using GSTP1-deficient MCF-7 cancer cells and siRNA interference targeting GSTP1 in HaCaT keratinocytes expressing either wild-type or mutant HPV-16 E7, we uncovered a pivotal role for GSTP1 in the pro-survival program elicited by its binding with HPV-16 E7. CONCLUSIONS/SIGNIFICANCE: This study provides further evidence of the transforming abilities of this oncoprotein, setting the groundwork for devising unique molecular tools that can both interfere with the interaction between HPV-16 E7 and GSTP1 and minimize the survival of HPV-16 E7-expressing cancer cells.


Asunto(s)
Gutatión-S-Transferasa pi/metabolismo , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Transformación Celular Neoplásica , Regulación Viral de la Expresión Génica , Humanos , Queratinocitos/virología , Espectrometría de Masas/métodos , Conformación Molecular , Mutación , Proteínas E7 de Papillomavirus , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...