Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-517339

RESUMEN

The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the importance of having proper tools and models to study the pathophysiology of emerging infectious diseases to test therapeutic protocols, assess changes in viral phenotype and evaluate the effect of viral evolution. This study provides a comprehensive characterization of the Syrian hamster (Mesocricetus auratus) as an animal model for SARS-CoV-2 infection, using different approaches (description of clinical signs, viral replication, receptor profiling and host immune response) and targeting four different organs (lungs, intestine, brain and PBMCs). Our data showed that both male and female hamsters are susceptible to the infection and develop a disease similar to the one observed in patients with COVID-19, including moderate to severe pulmonary lesions, inflammation and recruitment of the immune system in lungs and at systemic level. However, all animals recovered within 14 days without developing the severe pathology seen in humans, and none of them died. We found faint evidence for intestinal and neurological tropism associated with absence of lesions and a minimal host response in intestines and brains, highlighting another crucial difference with the multi-organ impairment of severe COVID-19. When comparing male and female hamsters, it was observed that males sustained higher viral shedding and replication in lungs, suffered from more severe symptoms and histopathological lesions and triggered higher pulmonary inflammation. Overall, these data confirm the Syrian hamster as being a suitable model for mild-moderate COVID-19 and reflect sex-related differences in the response against the virus observed in humans.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253260

RESUMEN

BackgroundSARS-CoV-2 serology presents an important role in understanding the virus epidemiology, in vaccine prioritization strategies and in convalescent plasma therapy. Immunoassays performances have to be accurately evaluated and correlated with neutralizing antibodies to be used as a surrogate measure of neutralizing activity. We investigate the analytical and clinical performance of a SARS-CoV-2 RBD IgG assay, automated on a high throughput platform, and the correlation of the antibodies (Ab) levels with the plaque reduction neutralization (PRNT50) Ab titers. MethodsA series of 546 samples were evaluated by SARS-CoV-2 RBD IgG assay (Snibe diagnostics), including 171 negative and 168 positive SARS-CoV-2 subjects and a further group of 207 subjects of the COVID-19 family clusters follow-up cohort. ResultsAssay precision was acceptable at low and medium levels; linearity was excellent in all the measurement range. Considering specimens collected after 14 days post symptoms onset, overall sensitivity and specificity were 99.0% and 92.5%, respectively. A total of 281 leftover samples results of the PRNT50 test were available. An elevated correlation was obtained between the SARS-CoV-2 RBD IgG assay and the PRNT50 titer at univariate (rho = 0.689) and multivariate (rho = 0.712) analyses. ConclusionsSARS-CoV-2 S-RBD IgG assay achieves elevated analytical and clinical performances, and a strong correlation with sera neutralization activity.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20166546

RESUMEN

BackgroundReliable high-throughput serological assays for SARS-CoV-2 antibodies (Abs) are urgently needed for the effective containment of the COVID-19 pandemic, as it is of crucial importance to understand the strength and duration of immunity after infection, and to make informed decisions concerning the activation or discontinuation of physical distancing restrictions. MethodsIn 184 serum samples from 130 COVID-19 patients and 54 SARS-CoV-2 negative subjects, the analytical and clinical performances of four commercially available chemiluminescent assays (Abbott SARS-Cov-2 IgG, Roche Elecsys anti-SARS-CoV-2, Ortho SARS-CoV-2 total and IgG) and one enzyme-linked immunosorbent assay (Diesse ENZY-WELL SARS-CoV-2 IgG) were evaluated and compared with the neutralization activity achieved using the plaque reduction neutralization test (PRNT). FindingsPrecision results ranged from 0.9% to 11.8% for all assays. Elecsys anti-SARS-CoV-2 demonstrated linearity of results at concentrations within the cut-off value. Overall, sensitivity ranged from 78.5 to 87.8%, and specificity, from 97.6 to 100%. On limiting the analysis to samples collected 12 days after onset of symptoms, the sensitivity of all assays increased, the highest value (95.2%) being obtained with VITRO Anti-SARS-CoV-2 Total and Architect SARS-CoV-2 IgG. The strongest PRNT50 correlation with antibody levels was obtained with ENZY-Well SARS-CoV-2 IgG (rho = 0.541, p < 0.001). InterpretationThe results confirmed that all immunoassays had an excellent specificity, whereas sensitivity varied across immunoassays, depending strongly on the time interval between symptoms onset and sample collection. Further studies should be conducted to achieve a stronger correlation between antibody measurement and PRNT50 in order to obtain useful information for providing effective passive antibody therapy, and developing a vaccine against the SARS-CoV-2 virus.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-167049

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global public health emergency. COVID-19 typically manifests as a respiratory illness but an increasing number of clinical reports describe gastrointestinal (GI) symptoms. This is particularly true in children in whom GI symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. By contrast, fetuses seem to be rarely affected by COVID-19, although the virus has been detected in placentas of affected women. These observations raise the question of whether the virus can infect and replicate within the stomach once ingested. Moreover, it is not yet clear whether active replication of SARS-CoV-2 is possible in the stomach of children or in fetuses at different developmental stages. Here we show the novel derivation of fetal gastric organoids from 8-21 post-conception week (PCW) fetuses, and from pediatric biopsies, to be used as an in vitro model for SARS-CoV-2 gastric infection. Gastric organoids recapitulate human stomach with linear increase of gastric mucin 5AC along developmental stages, and expression of gastric markers pepsinogen, somatostatin, gastrin and chromogranin A. In order to investigate SARS-CoV-2 infection with minimal perturbation and under steady-state conditions, we induced a reversed polarity in the gastric organoids (RP-GOs) in suspension. In this condition of exposed apical polarity, the virus can easily access viral receptor angiotensin-converting enzyme 2 (ACE2). The pediatric RP-GOs are fully susceptible to infection with SARS-CoV-2, where viral nucleoprotein is expressed in cells undergoing programmed cell death, while the efficiency of infection is significantly lower in fetal organoids. The RP-GOs derived from pediatric patients show sustained robust viral replication of SARS-CoV-2, compared with organoids derived from fetal stomachs. Transcriptomic analysis shows a moderate innate antiviral response and the lack of differentially expressed genes belonging to the interferon family. Collectively, we established the first expandable human gastric organoid culture across fetal developmental stages, and we support the hypothesis that fetal tissue seems to be less susceptible to SARS-CoV-2 infection, especially in early stages of development. However, the virus can efficiently infect gastric epithelium in pediatric patients, suggesting that the stomach might have an active role in fecal-oral transmission of SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA