Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 118(1): 130-141, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32886350

RESUMEN

The sufficient provision of oxygen is mandatory for enzymatic oxidations in aqueous solution, however, in process optimization this still is a bottleneck that cannot be overcome with the established methods of macrobubble aeration. Providing higher mass transfer performance through microbubble aerators, inefficient aeration can be overcome or improved. Investigating the mass transport performance in a model protein solution, the microbubble aeration results in higher kL a values related to the applied airstream in comparison with macrobubble aeration. Comparing the aerators at identical kL a of 160 and 60 1/h, the microbubble aeration is resulting in 25 and 44 times enhanced gas utility compared with aeration with macrobubbles. To prove the feasibility of microbubbles in biocatalysis, the productivity of a glucose oxidase catalyzed biotransformation is compared with macrobubble aeration as well as the gas-saving potential. In contrast to the expectation that the same productivities are achieved at identically applied kL a, microbubble aeration increased the gluconic acid productivity by 32% and resulted in 41.6 times higher oxygen utilization. The observed advantages of microbubble aeration are based on the large volume-specific interfacial area combined with a prolonged residence time, which results in a high mass transfer performance, less enzyme deactivation by foam formation, and reduced gas consumption. This makes microbubble aerators favorable for application in biocatalysis.


Asunto(s)
Reactores Biológicos , Oxígeno/metabolismo , Eliminación de Residuos Líquidos , Aguas Residuales , Análisis de la Demanda Biológica de Oxígeno , Biotransformación
2.
RSC Adv ; 11(7): 4087-4096, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35424350

RESUMEN

The present study focuses on the aeration of aqueous triethanolamine acting as reaction medium for biocatalytic carboxylations. For enhancing mass transfer in a bubble column reactor, microbubble aeration is applied and compared to conventional macrobubble aeration. Application of a 0.5 µm porous sparger enables microbubble CO2 aeration with bubble size distributions below 150 µm in Sauter mean diameter, correlating with the highest measured mass transfer rates. During CO2 saturation of the aqueous triethanolamine, bubble size distributions changed according to the level of CO2 saturation. For microbubbles, less foaming was observed compared to macrobubble aeration by a 10 µm porous sparger. This microbubble effect is attributed to their accelerated dissolution assisted by the Laplace pressure lowering the amount of bubbles reaching the surface of the liquid. The experiments reveal that the rate of interfacial area generation, which is calculated based on measured bubble size distributions, influences the biocatalyst activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...