Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; : e16360, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888183

RESUMEN

PREMISE: Strong elevational and latitudinal gradients allow the study of genetic differentiation in response to similar environmental changes. However, it is uncertain whether the environmental changes along the two types of gradients result in similar genetically based changes in quantitative traits. Peripheral arctic and alpine populations are thought to have less evolutionary potential than more central populations do. METHODS: We studied quantitative traits of the widespread Anthyllis vulneraria in a common garden. Plants originated from 20 populations along a 2000-m elevational gradient from the lowlands to the elevational limit of the species in the Alps, and from 20 populations along a 2400-km latitudinal gradient from the center of the distribution of the species in Central Europe to its northern distributional margin. RESULTS: Most traits showed similar clinal variations with elevation and latitude of origin, and the magnitude of all measured traits in relation to mean annual temperature was similar. Higher QST values than FST values in several traits indicated diversifying selection, but for others QST was smaller than FST. Genetic diversity of quantitative traits and neutral molecular markers was not correlated. Plasticity in response to favorable conditions declined with elevation and less strongly with latitude of origin, but the evolvability of traits did not. CONCLUSIONS: The clinal variation suggests adaptive differentiation of quantitative traits along the two gradients. The evolutionary potential of peripheral populations is not necessarily reduced, but lower plasticity may threaten their survival under rapidly changing climatic conditions.

2.
Ecol Evol ; 13(6): e10167, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37287855

RESUMEN

Interactions between root hemiparasitic plants and their hosts are strongly affected by host identity, but may also depend on the condition of the host. An important determinant of host quality could be host age, as it may influence host size, allocation patterns, responses to infection, and the strength of competition for light between parasite and host. We investigated the effects of host species identity, host age and above-ground separation of hemiparasite and host on the interactions between the hemiparasite Rhinanthus alectorolophus and five host species in a factorial experiment. The host species were planted at six different times, from 10 weeks before the parasite was planted to 4 weeks after. Host age strongly influenced the performance of the parasite, but these effects also varied among host species. Parasites grew largest with hosts planted at the same time or 2 weeks earlier, but their performance strongly declined both with increasing host age and with the time they grew autotrophically. A large part of the variation due to host age but not of that due to host species identity could be related to the negative influence of host size at the likely time of parasite attachment. The low quality of older hosts was not due to light competition, suggesting that effective exploitation of these hosts was prevented by other factors like harder roots, stronger defense against parasite attack or competition for resources taken up by the host roots. Suppression of host growth by the parasites declined with increasing host age. The results indicate that the choice of host age may influence the results of studies on hemiparasites. They also highlight the importance for annual root hemiparasites of attachment in early spring, that is, at a time when their mostly perennial hosts produce fresh roots but are still poorly developed above ground.

3.
Commun Biol ; 6(1): 330, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973362

RESUMEN

Mutualistic interactions are by definition beneficial for each contributing partner. However, it is insufficiently understood how mutualistic interactions influence partners throughout their lives. Here, we used animal species-explicit, microhabitat-structured integral projection models to quantify the effect of seed dispersal by 20 animal species on the full life cycle of the tree Frangula alnus in Bialowieza Forest, Eastern Poland. Our analysis showed that animal seed dispersal increased population growth by 2.5%. The effectiveness of animals as seed dispersers was strongly related to the interaction frequency but not the quality of seed dispersal. Consequently, the projected population decline due to simulated species extinction was driven by the loss of common rather than rare mutualist species. Our results support the notion that frequently interacting mutualists contribute most to the persistence of the populations of their partners, underscoring the role of common species for ecosystem functioning and nature conservation.


Asunto(s)
Ecosistema , Árboles , Animales , Semillas , Frutas , Bosques
4.
AoB Plants ; 15(2): plac063, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36751364

RESUMEN

Root hemiparasitic plants act as keystone species influencing plant community composition through their differential suppression of host species. Their own performance also strongly depends on interactions with host species. However, little is known about the roles of parasite genetic variation vs. plasticity in these interactions. We grew plants from eight maternal families of the root hemiparasite Rhinanthus alectorolophus with six potential host species (two grasses, two legumes and two forbs) and without a host and measured fitness-related and morphological traits of the parasite, host biomass and overall productivity. Parasite biomass and other traits showed strong plastic variation in response to different host species, but were also affected by parasite maternal family. Parasite seed families responded differently to the hosts, indicating genetic variation that could serve as the basis for adaptation to different host plants. However, there were no negative correlations in the performance of families across different hosts, indicating that R. alectorolophus has plastic generalist genotypes and is not constrained in its use of different host species by trade-offs in performance. Parasite effects on host biomass (which may indicate virulence) and total productivity (host + parasite biomass) depended on the specific combination of parasite family and host species. Mean biomass of hosts with a parasite family and mean biomass of that family tended to be negatively correlated, suggesting selection for maximum resource extraction from the hosts. Specialization of generalist root hemiparasites may be restricted by a lack of trade-offs in performance across hosts, together with strong spatial and temporal variation in host species availability. The genetic variation in the effects on different hosts highlights the importance of genetic diversity of hemiparasites for their effects on plant community structure and productivity and for the success of using them to restore grassland diversity.

5.
Ecol Evol ; 12(11): e9462, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36415877

RESUMEN

Formerly common plant species are expected to be particularly susceptible to recent habitat fragmentation. We studied the population genetics of 19 recently fragmented Saxifraga granulata populations (max. distance 61 km) in Luxembourg and neighboring Germany using RAPD markers and a common garden experiment. We assessed (1) the relationships between plant fitness, quantitative genetic variation, molecular genetic variation, and population size; and (2) the relative importance of genetic drift and selection in shaping genetic variation. Molecular genetic diversity was high but did not correlate with population size, habitat conditions, or plant performance. Genetic differentiation was low (F ST = 0.079 ± 0.135), and there was no isolation by distance. Longevity, clonality, and the long-lived seed bank of S. granulata may have prevented strong genetic erosion and genetic differentiation among populations. However, genetic distinctness increased with decreasing genetic diversity indicating that random genetic drift occurred in the studied populations. Quantitative and molecular genetic variations were correlated, and their differentiation (Q ST vs. F ST) among S. granulata populations was similar, suggesting that mainly random processes have shaped the quantitative genetic differentiation among populations. However, pairwise quantitative genetic distances increased with geographic and climatic distances, even when adjusted for molecular genetic distances, indicating diversifying selection. Our results indicate that long-lived clonal species may be buffered at least temporarily against the negative effects of fragmentation. The relationship between quantitative genetic and geographic distance may be a more sensitive indicator of selection than Q ST-F ST differences.

6.
Am J Bot ; 109(10): 1545-1559, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36164840

RESUMEN

PREMISE: Ex situ cultivation is important for plant conservation, but cultivation in small populations may result in genetic changes by drift, inbreeding, or unconscious selection. Repeated inbreeding potentially influences not only plant fitness, but also floral traits and interactions with pollinators, which has not yet been studied in an ex situ context. METHODS: We studied the molecular genetic variation of Digitalis lutea from a botanic garden population cultivated for 30 years, a frozen seed bank conserving the original genetic structure, and two current wild populations including the source population. In a common garden, we studied the effects of experimental inbreeding and between-population crosses on performance, reproductive traits, and flower visitation of plants from the garden and a wild population. RESULTS: Significant genetic differentiation was found between the garden population and the wild population from which the seeds had originally been gathered. After experimental selfing, inbreeding depression was only found for germination and leaf size of plants from the wild population, indicating a history of inbreeding in the smaller garden population. Moreover, garden plants flowered earlier and had floral traits related to selfing, whereas wild plants had traits related to attracting pollinators. Bumblebees visited more flowers of outbred than inbred plants and of wild than garden plants. CONCLUSIONS: Our case study suggests that high levels of inbreeding during ex situ cultivation can influence reproductive traits and thus interactions with pollinators. Together with the effects of genetic erosion and unconscious selection, these changes may affect the success of reintroductions into natural habitats.


Asunto(s)
Digitalis , Endogamia , Polinización , Flores/genética , Variación Genética
7.
Ecol Evol ; 12(8): e9167, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35949527

RESUMEN

The abundant centre model (ACM) predicts that the suitability of environmental conditions for a species decreases from the centre of its distribution toward its range periphery and, consequently, its populations will become scarcer, smaller and more isolated, resulting in lower genetic diversity and increased differentiation. However, little is known about whether genetic diversity shows similar patterns along elevational and latitudinal gradients with similar changes in important environmental conditions. Using microsatellite markers, we studied the genetic diversity and structure of 20 populations each of Anthyllis vulneraria along elevational gradients in the Alps from the valleys to the elevational limit (2500 m) and along a latitudinal gradient (2500 km) from Central Europe to the range margin in northern Scandinavia. Both types of gradients corresponded to an 11.5°C difference in mean annual temperature. Genetic diversity strongly declined and differentiation increased with latitude in line with the predictions of the ACM. However, as population size did not decline with latitude and genetic diversity was not related to population size in A. vulneraria, this pattern is not likely to be due to less favorable conditions in the North, but due to serial founder effects during the post-glacial recolonization process. Genetic diversity was not related to elevation, but we found significant isolation by distance along both gradients, although the elevational gradient was shorter by orders of magnitude. Subarctic populations differed genetically from alpine populations indicating that the northern populations did not originate from high elevational Alpine ones. Our results support the notion that postglacial latitudinal colonization over large distances resulted in a larger loss of genetic diversity than elevational range shifts. The lack of genetic diversity in subarctic populations may threaten their long-term persistence in the face of climate change, whereas alpine populations could benefit from gene flow from low-elevation populations.

8.
Oecologia ; 197(2): 537-549, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34601636

RESUMEN

Widespread plants may provide natural models for how population processes change with temperature and other environmental variables and how they may respond to global change. Similar changes in temperature can occur along altitudinal and latitudinal gradients, but hardly any study has compared the effects of the two types of gradients. We studied populations of Anthyllis vulneraria along a latitudinal gradient from Central Europe to the range limit in the North and an altitudinal gradient in the Alps from 500 m to the altitudinal limit at 2500 m, both encompassing a change in annual mean temperature of c. 11.5 °C. Plant size and reproduction decreased, but plant density increased along both gradients, indicating higher recruitment and demographic compensation among vital rates. Our results support the view that demographic compensation may be common in widespread species in contrast to the predictions of the abundant centre model of biogeography. Variation in temperature along the gradients had the strongest effects on most population characteristics, followed by that in precipitation, solar radiation, and soil nutrients. The proportion of plants flowering, seed set and seed mass declined with latitude, while the large variation in these traits along the altitudinal gradient was not related to elevation and covarying environmental variables like annual mean temperature. This suggests that it will be more difficult to draw conclusions about the potential impacts of future climate warming on plant populations in mountains, because of the importance of small-scale variation in environmental conditions.


Asunto(s)
Altitud , Plantas , Clima , Cambio Climático , Suelo
9.
Ecol Evol ; 11(17): 12011-12024, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34522357

RESUMEN

The performance of root hemiparasites depends strongly on host species identity, but it remains unknown whether there exist general patterns in the quality of species as hosts for hemiparasites and in their sensitivity to parasitism. In a comparative approach, the model root hemiparasites Rhinanthus minor and R. alectorolophus were grown with 25 host species (grasses, forbs, and legumes) at two nutrient levels. Hosts grown without parasites served as a control. Host species identity strongly influenced parasite biomass and other traits, and both parasites grew better with legumes and grasses than with forbs. The biomass of R. alectorolophus was much higher than that of R. minor with all host plants and R. alectorolophus responded much more strongly to higher nutrient availability than R. minor. The performance of the two species of Rhinanthus with individual hosts was strongly correlated, and it was also correlated with that of R. alectorolophus and the related Odontites vulgaris in previous experiments with many of the same hosts, but only weakly with that of the less closely related Melampyrum arvense. The negative effect of R. minor on host biomass was less strong than that of R. alectorolophus, but stronger relative to its own biomass, suggesting that it is more parasitic. The impact of the two parasites on individual hosts did not depend on nutrient level and was correlated. Several legumes and grasses were tolerant of parasitism. While R. minor slightly reduced mean overall productivity, R. alectorolophus increased it with several species, indicating that the loss of host biomass was more than compensated by that of the parasite. The results show that closely related parasites have similar host requirements and correlated negative effects on individual hosts, but that there are also specific interactions between pairs of parasitic plants and their hosts.

10.
Heredity (Edinb) ; 127(4): 347-356, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34188195

RESUMEN

The magnitude of inbreeding depression (ID) varies unpredictably among environments. ID often increases in stressful environments suggesting that these expose more deleterious alleles to selection or increase their effects. More simply, ID could increase under conditions that amplify phenotypic variation (CV²), e.g., by accentuating size hierarchies among plants. These mechanisms are difficult to distinguish when stress increases both ID and phenotypic variation. We grew in- and outbred progeny of Mimulus guttatus under six abiotic stress treatments (control, waterlogging, drought, nutrient deficiency, copper addition, and clipping) with and without competition by the grass Poa palustris. ID differed greatly among stress treatments with δ varying from 7% (control) to 61% (waterlogging) but did not consistently increase with stress intensity. Poa competition increased ID under nutrient deficiency but not other stresses. Analyzing effects of initial size on performance of outbred plants suggests that under some conditions (low N, clipping) competition increased ID by amplifying initial size differences. In other cases (e.g., high ID under waterlogging), particular environments amplified the deleterious genetic effects of inbreeding suggesting differential gene expression. Interestingly, conditions that increased the phenotypic variability of inbred progeny regularly increased ID whereas variability among outbred progeny showed no relationship to ID. Our study reconciles the stress- and phenotypic variability hypotheses by demonstrating how specific conditions (rather than stress per se) act to increase ID. Analyzing CV² separately in inbred and outbred progeny while including effects of initial plant size improve our ability to predict how ID and gene expression vary across environments.


Asunto(s)
Depresión Endogámica , Alelos , Sequías , Endogamia , Estrés Fisiológico
11.
Am J Bot ; 107(3): 423-435, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32067225

RESUMEN

PREMISE: Different cytotypes of a species may differ in their morphology, phenology, physiology, and their tolerance of extreme environments. We studied the ecological niches of two subspecies of Saxifraga rosacea with different ploidy levels: the hexaploid Central European endemic subspecies sponhemica and the more widely distributed octoploid subspecies rosacea. METHODS: For both cytotypes, we recorded local environmental conditions and mean plant trait values in populations across their areas of distribution, analyzed their distributions by niche modeling, studied their performance at two transplant sites with contrasting conditions, and experimentally tested their cold resistance. RESULTS: Mean annual temperature was higher in hexaploid than in octoploid populations and experiments indicated that frost tolerance of the hexaploid is lower than that of the octoploid. Reproduction of octoploids from Central Europe was higher than that of hexaploids at a transplant site in subarctic Iceland, whereas the opposite was true in temperate Luxembourg, indicating adaptation of the octoploids to colder conditions. Temperature variables were also most important in niche models predicting the distribution of the two cytotypes. Genetic differences in survival among populations were larger for the octoploids than for the hexaploids in both field gardens, suggesting that greater genetic variability may contribute to the octoploid's larger distributional range. CONCLUSIONS: Our results support the hypotheses that different cytotypes may have different niches leading to spatial segregation, and that higher ploidy levels can result in a broader ecological niche and greater tolerance of more extreme conditions.


Asunto(s)
Rosácea , Saxifragaceae , Ecosistema , Europa (Continente) , Humanos , Poliploidía
12.
Ecol Evol ; 9(3): 1255-1267, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30805157

RESUMEN

It is often assumed that the negative effects of inbreeding on fitness (inbreeding depression, ID) are particularly strong under stressful conditions. However, ID may be relatively mild under types of stress that plant populations have experienced for a long time, because environment-specific deleterious alleles may already have been purged. We examined the performance of open- and self-pollinated progeny of the short-lived calcareous grassland plant Anthyllis vulneraria under three intensities of each of five types of stress. Drought, nutrient deficiency, and defoliation were chosen as stresses typical for the habitat of origin, while shade and waterlogging were expected to be novel, unfamiliar stresses for A. vulneraria. The stresses reduced plant biomass by up to 91%, and the responses of the plants were mostly in line with the functional equilibrium hypothesis. There was significant ID in biomass (δ = 0.17), leaf chlorophyll content, and the number of root nodules of the legume, but the magnitude of ID was independent of the stress treatments. In particular, there was no significant interaction between inbreeding and the intensity of any stress type, and ID was not higher under novel than under familiar stresses. In addition, phenotypic plasticity in biomass allocation, leaf functional traits and in root nodulation of the legume to the various stress treatments was not influenced by inbreeding. Our findings do not support the common hypothesis of stronger ID under stressful environments, not even if the stresses are novel to the plants.

13.
Ann Bot ; 119(1): 143-150, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27634574

RESUMEN

BACKGROUND AND AIMS: Populations of many hemiparasitic plants are fragmented and threatened by inbreeding depression (ID). In addition, they may also be strongly affected by a lack of suitable host species. However, nothing is known about possible interactive effects of inbreeding and host quality for parasitic plants. Poor host quality represents a special type of biotic stress and the magnitude of ID is often expected to be higher in more stressful environments. METHODS: We studied the effects of inbreeding and the quality of host species for the declining root hemiparasite Rhinanthus alectorolophus Selfed and open-pollinated parasites from two natural populations were grown (1) with 13 potential host species and (2) with 15 four-species mixtures. KEY RESULTS: ID differed among host species and mixtures. In the first experiment, ID was highest in parasites grown with good hosts and declined with stress intensity. In the second experiment, ID was not influenced by stress intensity, but was highest in mixtures of hosts from only one functional group and lowest in mixtures containing three functional groups. Both parasite performance with individual host species and the damage to these host species differed between parasites from the two study populations. CONCLUSIONS: Our results contradict the common assumption that ID is generally higher in more stressful environments. In addition, they support the importance of diverse host communities for hemiparasitic plants. The differences in host quality between the two parasite populations indicate genetic variation in the adaptation to individual hosts and in host-specific virulence. However, inbreeding did not affect specific host-parasite interactions.


Asunto(s)
Endogamia , Orobanchaceae/fisiología , Germinación/fisiología , Interacciones Huésped-Parásitos/fisiología , Orobanchaceae/crecimiento & desarrollo , Polinización/fisiología , Estrés Fisiológico/fisiología
14.
AoB Plants ; 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27519913

RESUMEN

Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations.

15.
Evolution ; 70(6): 1225-38, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27110935

RESUMEN

Inbreeding depression (ID) is generally assumed to increase under stressful conditions, but a number of studies have found the opposite pattern, that is that crossed offspring were more capable of exploiting benign conditions. Alternatively, the phenotypic variation hypothesis predicts that not stress intensity, but enhanced phenotypic variation in an environment leads to increased ID. We subjected inbred and crossed offspring of Silene vulgaris to drought, simulated herbivory, copper contamination, and two levels of nutrient deficiency and shade. In contrast to the predominant expectation, most stress treatments decreased inbreeding depression. With increasing nutrient limitation, ID decreased strongly, whereas under increasing shade ID did not change. These differences may be due to purging in the population of origin where conditions are nutrient-poor and dry, but not shaded. In contrast to the greenhouse experiment, ID was higher in a field site than in a more benign common garden. However, the predictions of the phenotypic variation hypothesis were met in both the greenhouse and the field versus garden experiment. The results suggest that there may be no general relationship between ID and stress intensity, but specific effects of stress type and the novelty and variability of the environment.


Asunto(s)
Depresión Endogámica , Silene/fisiología , Estrés Fisiológico , Cobre/toxicidad , Sequías , Herbivoria , Luz , Silene/efectos de los fármacos , Silene/genética , Silene/efectos de la radiación , Contaminantes del Suelo/toxicidad
16.
Microb Ecol ; 70(4): 981-92, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25977143

RESUMEN

We studied potential denitrification activity and the underlying denitrifier communities in soils from a semiarid savanna ecosystem of the Kavango region in NE Namibia to help in predicting future changes in N(2)O emissions due to continuing changes of land use in this region. Soil type and land use (pristine, fallow, and cultivated soils) influenced physicochemical characteristics of the soils that are relevant to denitrification activity and N(2)O fluxes from soils and affected potential denitrification activity. Potential denitrification activity was assessed by using the denitrifier enzyme activity (DEA) assay as a proxy for denitrification activity in the soil. Soil type and land use influenced C and N contents of the soils. Pristine soils that had never been cultivated had a particularly high C content. Cultivation reduced soil C content and the abundance of denitrifiers and changed the composition of the denitrifier communities. DEA was strongly and positively correlated with soil C content and was higher in pristine than in fallow or recently cultivated soils. Soil type and the composition of both the nirK- and nirS-type denitrifier communities also influenced DEA. In contrast, other soil characteristics like N content, C:N ratio, and pH did not predict DEA. These findings suggest that due to greater availability of soil organic matter, and hence a more effective N cycling, the natural semiarid grasslands emit more N(2)O than managed lands in Namibia.


Asunto(s)
Agricultura/métodos , Pradera , Consorcios Microbianos , Microbiología del Suelo , Suelo/química , Carbono/análisis , Desnitrificación , Ecosistema , Pruebas de Enzimas/métodos , Concentración de Iones de Hidrógeno , Namibia , Nitratos/análisis , Nitrógeno/análisis , Óxido Nitroso/análisis , Agua/análisis
17.
Ann Bot ; 115(7): 1177-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25862244

RESUMEN

BACKGROUND AND AIMS: The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability. METHODS: Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits. KEY RESULTS: In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion. CONCLUSIONS: The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.


Asunto(s)
Ecosistema , Variación Genética , Saxifragaceae/genética , Selección Genética , Clima , Europa (Continente) , Densidad de Población , Carácter Cuantitativo Heredable , Técnica del ADN Polimorfo Amplificado Aleatorio
18.
Ecology ; 93(10): 2253-62, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23185886

RESUMEN

Biogeographic models predict that, because of increasingly unfavorable and stressful conditions, populations become less frequent, smaller, less dense, and less reproductive toward the range edges. These models have greatly influenced the thinking on geographical range limits and have broad implications for ecology, evolution, and conservation. However, empirical tests of the models have rarely investigated comprehensive sets of population properties. We studied population size and density and a broad set of fitness-related traits in 66 populations of the alpine thistle Carduus defloratus along a latitudinal (615 km) and altitudinal (342-2300 m) gradient from the European Alps in the south to the northern range limit in the low mountain ranges of central Germany. Regression analysis indicated that population size and plant density declined with decreasing altitude from the center to the range margin, but plant size increased. In spite of the larger size of plants, the number of seeds produced strongly declined toward the range margin, mainly due to an increase in seed abortion. The number of flowering plants in a population influenced all components of reproduction. Plants in large populations initiated more seeds, aborted fewer seeds, and produced more and larger seeds per plant. The probability that seeds were attacked by insect larvae and the proportion of seeds damaged decreased strongly from the center to the margin of the distribution. However, in spite of the much lower level of parasitization, plants at the range margin produced far fewer viable seeds. Fluctuating asymmetry of leaf width, an indicator of developmental instability, was similar across the range and not related to population size.


Asunto(s)
Carduus/fisiología , Semillas/fisiología , Altitud , Animales , Demografía , Europa (Continente) , Flores , Insectos/fisiología , Modelos Logísticos , Reproducción/fisiología
19.
PLoS One ; 7(10): e47415, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23115645

RESUMEN

How climate-change induced environmental stress may alter the effects of inbreeding in patchy populations of rare species is poorly understood. We investigated the fitness of progeny from experimental self- and cross-pollinations in eight populations of different size of Echium wildpretii, a rare endemic plant of the arid subalpine zone of the Canarian island of Tenerife. As control treatments we used open pollination and autonomous selfing. The seed set of open-pollinated flowers was 55% higher than that of autonomously selfed flowers, showing the importance of animal pollination for reproductive success. The seed set, seed mass and germination rate of seedlings of hand-selfed flowers was similar to that of hand-crossed flowers, indicating weak inbreeding depression (seed set -4.4%, seed mass -4.1%, germination -7.3%). Similarly, under normal watering there were no significant effects of inbreeding on seedling survival (-3.0%). However, under low watering of seedlings inbreeding depression was high (survival -50.2%). Seed set of open- and hand-outcrossed-pollinated flowers was higher in large than in small populations, possibly due to more frequent biparental inbreeding in the latter. However, later measures of progeny fitness were not significantly influenced by population size. We predict that increasing drought duration and frequency due to climate change and reductions of population sizes may increase inbreeding depression in this charismatic plant species and thus threaten its future survival in the longer term.


Asunto(s)
Boraginaceae/fisiología , Sequías , Estrés Fisiológico , Boraginaceae/embriología , Germinación , Polen , Semillas , España
20.
Am J Bot ; 99(8): 1300-13, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22859653

RESUMEN

PREMISE OF THE STUDY: Inbreeding depression is a major evolutionary force and an important topic in conservation genetics because habitat fragmentation leads to increased inbreeding in the populations of many species. Crosses between populations may restore heterozygosity, resulting in increased performance (heterosis), but may also lead to the disruption of coadapted gene complexes and to decreased performance (outbreeding depression). METHODS: We investigated the effects of selfing and of within and between population crosses on reproduction and the performance of two generations of offspring of the declining grassland plant Saxifraga granulata (Saxifragaceae). We also subjected the first generation of offspring to a fertilization and two stress treatments (competition and defoliation) to investigate whether the effects of inbreeding and interpopulation gene flow depend on environmental conditions. KEY RESULTS: Inbreeding depression affected all traits in the F(1) generation (δ = 0.07-0.55), but was stronger for traits expressed late during development and varied among families. The adaptive plasticity of offspring from selfing and from interpopulation crosses in response to nutrient addition was reduced. Outbreeding depression was also observed in response to stress. Multiplicative fitness of the F(2) generation after serial inbreeding was extremely low (δ > 0.99), but there was heterosis after crossing inbred lines. Outbreeding depression was not observed in the F(2). CONCLUSIONS: Continuous inbreeding may drastically reduce the fitness of plants, but effects may be environment-dependent. When assessing the genetic effects of fragmentation and interpopulation crosses, the possible effects on the mean performance of offspring and on its adaptive plasticity should be considered.


Asunto(s)
Adaptación Fisiológica , Variación Genética , Endogamia , Saxifragaceae/genética , Conservación de los Recursos Naturales , Cruzamientos Genéticos , Ambiente , Flores/genética , Flores/fisiología , Flujo Génico , Genética de Población , Heterocigoto , Vigor Híbrido , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Polen/genética , Polen/fisiología , Polinización , Reproducción , Aislamiento Reproductivo , Saxifragaceae/fisiología , Semillas/genética , Semillas/fisiología , Estrés Fisiológico , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...