Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photosynth Res ; 107(2): 139-50, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21181557

RESUMEN

The Fenna-Matthews-Olson (FMO) antenna protein from the green bacterium Pelodictyon phaeum mediates the transfer of energy from the peripheral chlorosome antenna complex to the membrane-bound reaction center. The three-dimensional structure of this protein has been solved using protein crystallography to a resolution limit of 2.0 Å, with R(work) and R(free) values of 16.6 and 19.9%, respectively. The structure is a trimer of three identical subunits related by a threefold symmetry axis. Each subunit has two beta sheets that surround 8 bacteriochlorophylls. The bacteriochlorophylls are all five-coordinated, with the axial ligand being a histidine, serine, backbone carbonyl, or bound water molecule. The arrangement of the bacteriochlorophylls is generally well conserved in comparison to other FMO structures, but differences are apparent in the interactions with the surrounding protein. In this structure the position and orientation of the eighth bacteriochlorophyll is well defined and shows differences in its location and the coordination of the central Mg compared to previous models. The implications of this structure on the ability of the FMO protein to perform energy transfer are discussed in terms of the experimental optical measurements.


Asunto(s)
Proteínas Bacterianas/química , Chlorobi/metabolismo , Complejos de Proteína Captadores de Luz/química , Cristalografía por Rayos X , Transferencia de Energía , Imagenología Tridimensional , Modelos Moleculares , Estructura Terciaria de Proteína
2.
BMC Genomics ; 11: 325, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20500872

RESUMEN

BACKGROUND: Rhodospirillum centenum is a photosynthetic non-sulfur purple bacterium that favors growth in an anoxygenic, photosynthetic N2-fixing environment. It is emerging as a genetically amenable model organism for molecular genetic analysis of cyst formation, photosynthesis, phototaxis, and cellular development. Here, we present an analysis of the genome of this bacterium. RESULTS: R. centenum contains a singular circular chromosome of 4,355,548 base pairs in size harboring 4,105 genes. It has an intact Calvin cycle with two forms of Rubisco, as well as a gene encoding phosphoenolpyruvate carboxylase (PEPC) for mixotrophic CO2 fixation. This dual carbon-fixation system may be required for regulating internal carbon flux to facilitate bacterial nitrogen assimilation. Enzymatic reactions associated with arsenate and mercuric detoxification are rare or unique compared to other purple bacteria. Among numerous newly identified signal transduction proteins, of particular interest is a putative bacteriophytochrome that is phylogenetically distinct from a previously characterized R. centenum phytochrome, Ppr. Genes encoding proteins involved in chemotaxis as well as a sophisticated dual flagellar system have also been mapped. CONCLUSIONS: Remarkable metabolic versatility and a superior capability for photoautotrophic carbon assimilation is evident in R. centenum.


Asunto(s)
Genoma Bacteriano/genética , Rhodospirillum centenum/genética , Rhodospirillum centenum/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Quimiotaxis/genética , Clorofila/biosíntesis , Flagelos/genética , Flagelos/metabolismo , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Fotosíntesis/genética , Rhodospirillum centenum/citología , Transducción de Señal/genética
3.
J Bacteriol ; 189(3): 683-90, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17098896

RESUMEN

Purple aerobic anoxygenic phototrophs (AAPs) are the only organisms known to capture light energy to enhance growth only in the presence of oxygen but do not produce oxygen. The highly adaptive AAPs compose more than 10% of the microbial community in some euphotic upper ocean waters and are potentially major contributors to the fixation of the greenhouse gas CO2. We present the complete genomic sequence and feature analysis of the AAP Roseobacter denitrificans, which reveal clues to its physiology. The genome lacks genes that code for known photosynthetic carbon fixation pathways, and most notably missing are genes for the Calvin cycle enzymes ribulose bisphosphate carboxylase (RuBisCO) and phosphoribulokinase. Phylogenetic evidence implies that this absence could be due to a gene loss from a RuBisCO-containing alpha-proteobacterial ancestor. We describe the potential importance of mixotrophic rather than autotrophic CO2 fixation pathways in these organisms and suggest that these pathways function to fix CO2 for the formation of cellular components but do not permit autotrophic growth. While some genes that code for the redox-dependent regulation of photosynthetic machinery are present, many light sensors and transcriptional regulatory motifs found in purple photosynthetic bacteria are absent.


Asunto(s)
Cromosomas Bacterianos/genética , Genoma Bacteriano , Roseobacter/genética , Roseobacter/metabolismo , Secuencia de Aminoácidos , ADN Bacteriano/química , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Fotosíntesis , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...