Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2316608121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38941277

RESUMEN

Coordination of goal-directed behavior depends on the brain's ability to recover the locations of relevant objects in the world. In humans, the visual system encodes the spatial organization of sensory inputs, but neurons in early visual areas map objects according to their retinal positions, rather than where they are in the world. How the brain computes world-referenced spatial information across eye movements has been widely researched and debated. Here, we tested whether shifts of covert attention are sufficiently precise in space and time to track an object's real-world location across eye movements. We found that observers' attentional selectivity is remarkably precise and is barely perturbed by the execution of saccades. Inspired by recent neurophysiological discoveries, we developed an observer model that rapidly estimates the real-world locations of objects and allocates attention within this reference frame. The model recapitulates the human data and provides a parsimonious explanation for previously reported phenomena in which observers allocate attention to task-irrelevant locations across eye movements. Our findings reveal that visual attention operates in real-world coordinates, which can be computed rapidly at the earliest stages of cortical processing.


Asunto(s)
Atención , Movimientos Sacádicos , Humanos , Atención/fisiología , Movimientos Sacádicos/fisiología , Adulto , Masculino , Femenino , Percepción Visual/fisiología , Campos Visuales/fisiología , Modelos Neurológicos , Estimulación Luminosa/métodos
2.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915708

RESUMEN

Animals receive a constant stream of sensory input, and detecting changes in this sensory landscape is critical to their survival. One signature of change detection in humans is the auditory mismatch negativity (MMN), a neural response to unexpected stimuli that deviate from a predictable sequence. This process requires the auditory system to adapt to specific repeated stimuli while remaining sensitive to novel input (stimulus-specific adaptation). MMN was originally described in humans, and equivalent responses have been found in other mammals and birds, but it is not known to what extent this deviance detection circuitry is evolutionarily conserved. Here we present the first evidence for stimulus-specific adaptation in the brain of a teleost fish, using whole-brain calcium imaging of larval zebrafish at single-neuron resolution with selective plane illumination microscopy. We found frequency-specific responses across the brain with variable response amplitudes for frequencies of the same volume, and created a loudness curve to model this effect. We presented an auditory 'oddball' stimulus in an otherwise predictable train of pure tone stimuli, and did not find a population of neurons with specific responses to deviant tones that were not otherwise explained by stimulus-specific adaptation. Further, we observed no deviance responses to an unexpected omission of a sound in a repetitive sequence of white noise bursts. These findings extend the known scope of auditory adaptation and deviance responses across the evolutionary tree, and lay groundwork for future studies to describe the circuitry underlying auditory adaptation at the level of individual neurons.

3.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771242

RESUMEN

A recent hypothesis characterizes difficulties in multitasking as being the price humans pay for our ability to generalize learning across tasks. The mitigation of these costs through training has been associated with reduced overlap of constituent task representations within frontal, parietal, and subcortical regions. Transcranial direct current stimulation, which can modulate functional brain activity, has shown promise in generalizing performance gains when combined with multitasking training. However, the relationship between combined transcranial direct current stimulation and training protocols with task-associated representational overlap in the brain remains unexplored. Here, we paired prefrontal cortex transcranial direct current stimulation with multitasking training in 178 individuals and collected functional magnetic resonance imaging data pre- and post-training. We found that 1 mA transcranial direct current stimulation applied to the prefrontal cortex paired with multitasking training enhanced training transfer to spatial attention, as assessed via a visual search task. Using machine learning to assess the overlap of neural activity related to the training task in task-relevant brain regions, we found that visual search gains were predicted by changes in classification accuracy in frontal, parietal, and cerebellar regions for participants that received left prefrontal cortex stimulation. These findings demonstrate that prefrontal cortex transcranial direct current stimulation may interact with training-related changes to task representations, facilitating the generalization of learning.


Asunto(s)
Imagen por Resonancia Magnética , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Humanos , Corteza Prefrontal/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Atención/fisiología , Transferencia de Experiencia en Psicología/fisiología , Mapeo Encefálico , Aprendizaje/fisiología , Adolescente
4.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38706138

RESUMEN

Perceptual decision-making is affected by uncertainty arising from the reliability of incoming sensory evidence (perceptual uncertainty) and the categorization of that evidence relative to a choice boundary (categorical uncertainty). Here, we investigated how these factors impact the temporal dynamics of evidence processing during decision-making and subsequent metacognitive judgments. Participants performed a motion discrimination task while electroencephalography was recorded. We manipulated perceptual uncertainty by varying motion coherence, and categorical uncertainty by varying the angular offset of motion signals relative to a criterion. After each trial, participants rated their desire to change their mind. High uncertainty impaired perceptual and metacognitive judgments and reduced the amplitude of the centro-parietal positivity, a neural marker of evidence accumulation. Coherence and offset affected the centro-parietal positivity at different time points, suggesting that perceptual and categorical uncertainty affect decision-making in sequential stages. Moreover, the centro-parietal positivity predicted participants' metacognitive judgments: larger predecisional centro-parietal positivity amplitude was associated with less desire to change one's mind, whereas larger postdecisional centro-parietal positivity amplitude was associated with greater desire to change one's mind, but only following errors. These findings reveal a dissociation between predecisional and postdecisional evidence processing, suggesting that the CPP tracks potentially distinct cognitive processes before and after a decision.


Asunto(s)
Toma de Decisiones , Electroencefalografía , Juicio , Metacognición , Humanos , Masculino , Femenino , Toma de Decisiones/fisiología , Adulto Joven , Metacognición/fisiología , Adulto , Incertidumbre , Juicio/fisiología , Percepción de Movimiento/fisiología , Encéfalo/fisiología , Estimulación Luminosa/métodos , Percepción Visual/fisiología
5.
Curr Biol ; 34(8): 1801-1809.e4, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38569544

RESUMEN

Neural oscillations reflect fluctuations in the relative excitation/inhibition of neural systems1,2,3,4,5 and are theorized to play a critical role in canonical neural computations6,7,8,9 and cognitive processes.10,11,12,13,14 These theories have been supported by findings that detection of visual stimuli fluctuates with the phase of oscillations prior to stimulus onset.15,16,17,18,19,20,21,22,23 However, null results have emerged in studies seeking to demonstrate these effects in visual discrimination tasks,24,25,26,27 raising questions about the generalizability of these phenomena to wider neural processes. Recently, we suggested that methodological limitations may mask effects of phase in higher-level sensory processing.28 To test the generality of phasic influences on perception requires a task that involves stimulus discrimination while also depending on early sensory processing. Here, we examined the influence of oscillation phase on the visual tilt illusion, in which a center grating has its perceived orientation biased away from the orientation of a surround grating29 due to lateral inhibitory interactions in early visual processing.30,31,32 We presented center gratings at participants' subjective vertical angle and had participants report whether the grating appeared tilted clockwise or counterclockwise from vertical on each trial while measuring their brain activity with electroencephalography (EEG). In addition to effects of alpha power and aperiodic slope, we observed robust associations between orientation perception and alpha and theta phase, consistent with fluctuating illusion magnitude across the oscillatory cycle. These results confirm that oscillation phase affects the complex processing involved in stimulus discrimination, consistent with its purported role in canonical computations that underpin cognition.


Asunto(s)
Percepción Visual , Humanos , Masculino , Adulto , Femenino , Percepción Visual/fisiología , Adulto Joven , Ilusiones/fisiología , Estimulación Luminosa , Electroencefalografía , Discriminación en Psicología/fisiología
6.
Trends Cogn Sci ; 28(5): 454-466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485576

RESUMEN

Which systems/organisms are conscious? New tests for consciousness ('C-tests') are urgently needed. There is persisting uncertainty about when consciousness arises in human development, when it is lost due to neurological disorders and brain injury, and how it is distributed in nonhuman species. This need is amplified by recent and rapid developments in artificial intelligence (AI), neural organoids, and xenobot technology. Although a number of C-tests have been proposed in recent years, most are of limited use, and currently we have no C-tests for many of the populations for which they are most critical. Here, we identify challenges facing any attempt to develop C-tests, propose a multidimensional classification of such tests, and identify strategies that might be used to validate them.


Asunto(s)
Estado de Conciencia , Humanos , Estado de Conciencia/fisiología , Animales , Inteligencia Artificial , Encéfalo/fisiología
7.
J Neurosci ; 44(21)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38531634

RESUMEN

Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.


Asunto(s)
Ácido Glutámico , Aprendizaje , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Ácido Glutámico/metabolismo , Corteza Prefrontal/fisiología , Corteza Prefrontal/metabolismo , Adulto Joven , Aprendizaje/fisiología , Ácido gamma-Aminobutírico/metabolismo , Atención/fisiología , Espectroscopía de Resonancia Magnética/métodos
8.
Nat Methods ; 21(5): 804-808, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38191935

RESUMEN

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.


Asunto(s)
Neuroimagen , Programas Informáticos , Neuroimagen/métodos , Humanos , Interfaz Usuario-Computador , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen
10.
Cognition ; 242: 105631, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820487

RESUMEN

Humans have well-documented priors for many features present in nature that guide visual perception. Despite being putatively grounded in the statistical regularities of the environment, scene priors are frequently violated due to the inherent variability of visual features from one scene to the next. However, these repeated violations do not appreciably challenge visuo-cognitive function, necessitating the broad use of priors in conjunction with context-specific information. We investigated the trade-off between participants' internal expectations formed from both longer-term priors and those formed from immediate contextual information using a perceptual inference task and naturalistic stimuli. Notably, our task required participants to make perceptual inferences about naturalistic images using their own internal criteria, rather than making comparative judgements. Nonetheless, we show that observers' performance is well approximated by a model that makes inferences using a prior for low-level image statistics, aggregated over many images. We further show that the dependence on this prior is rapidly re-weighted against contextual information, even when misleading. Our results therefore provide insight into how apparent high-level interpretations of scene appearances follow from the most basic of perceptual processes, which are grounded in the statistics of natural images.


Asunto(s)
Juicio , Percepción Visual , Humanos , Cognición
11.
Cereb Cortex ; 33(24): 11679-11694, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-37930735

RESUMEN

A pervasive limitation in cognition is reflected by the performance costs we experience when attempting to undertake two tasks simultaneously. While training can overcome these multitasking costs, the more elusive objective of training interventions is to induce persistent gains that transfer across tasks. Combined brain stimulation and cognitive training protocols have been employed to improve a range of psychological processes and facilitate such transfer, with consistent gains demonstrated in multitasking and decision-making. Neural activity in frontal, parietal, and subcortical regions has been implicated in multitasking training gains, but how the brain supports training transfer is poorly understood. To investigate this, we combined transcranial direct current stimulation of the prefrontal cortex and multitasking training, with functional magnetic resonance imaging in 178 participants. We observed transfer to a visual search task, following 1 mA left or right prefrontal cortex transcranial direct current stimulation and multitasking training. These gains persisted for 1-month post-training. Notably, improvements in visual search performance for the right hemisphere stimulation group were associated with activity changes in the right hemisphere dorsolateral prefrontal cortex, intraparietal sulcus, and cerebellum. Thus, functional dynamics in these task-general regions determine how individuals respond to paired stimulation and training, resulting in enhanced performance on an untrained task.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Individualidad , Aprendizaje/fisiología , Corteza Prefrontal/fisiología , Encéfalo/diagnóstico por imagen
12.
Brain Struct Funct ; 228(9): 2067-2087, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37697138

RESUMEN

Visuospatial neglect is a common, post-stroke cognitive impairment which is widely considered to be a disconnection syndrome. However, the patterns of disconnectivity associated with visuospatial neglect remain unclear. Here, we had 480 acute stroke survivors [age = 72.8 (SD = 13.3), 44.3% female, 7.5 days post-stroke (SD = 11.3)] undertake routine clinical imaging and standardised visuospatial neglect testing. The data were used to conduct voxel-wise, tract-level, and network-level lesion-mapping analyses aimed at localising the neural correlates of left and right egocentric (body-centred) and allocentric (object-centred) visuospatial neglect. Only minimal anatomical homogeneity was present between the correlates of right and left egocentric neglect across all analysis types. This finding challenges previous work suggesting that right and left visuospatial neglect are anatomically homologous, and instead suggests that egocentric neglect may involve damage to a shared, but hemispherically asymmetric attention network. By contrast, egocentric and allocentric neglect was associated with disconnectivity in a distinct but overlapping set of network edges, with both deficits related to damage across the dorsal and ventral attention networks. Critically, this finding suggests that the distinction between egocentric and allocentric neglect is unlikely to reflect a simple dichotomy between dorsal versus ventral networks dysfunction, as is commonly asserted. Taken together, the current findings provide a fresh perspective on the neural circuitry involved in regulating visuospatial attention, and provide important clues to understanding the cognitive and perceptual processes involved in this common and debilitating neuropsychological syndrome.


Asunto(s)
Trastornos de la Percepción , Accidente Cerebrovascular , Humanos , Femenino , Anciano , Masculino , Percepción Espacial/fisiología , Trastornos de la Percepción/diagnóstico por imagen , Trastornos de la Percepción/etiología , Trastornos de la Percepción/patología , Pruebas Neuropsicológicas , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Mapeo Encefálico/métodos , Lateralidad Funcional/fisiología
13.
PLoS Comput Biol ; 19(7): e1011245, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37450502

RESUMEN

The mechanisms that enable humans to evaluate their confidence across a range of different decisions remain poorly understood. To bridge this gap in understanding, we used computational modelling to investigate the processes that underlie confidence judgements for perceptual decisions and the extent to which these computations are the same in the visual and auditory modalities. Participants completed two versions of a categorisation task with visual or auditory stimuli and made confidence judgements about their category decisions. In each modality, we varied both evidence strength, (i.e., the strength of the evidence for a particular category) and sensory uncertainty (i.e., the intensity of the sensory signal). We evaluated several classes of computational models which formalise the mapping of evidence strength and sensory uncertainty to confidence in different ways: 1) unscaled evidence strength models, 2) scaled evidence strength models, and 3) Bayesian models. Our model comparison results showed that across tasks and modalities, participants take evidence strength and sensory uncertainty into account in a way that is consistent with the scaled evidence strength class. Notably, the Bayesian class provided a relatively poor account of the data across modalities, particularly in the more complex categorisation task. Our findings suggest that a common process is used for evaluating confidence in perceptual decisions across domains, but that the parameter settings governing the process are tuned differently in each modality. Overall, our results highlight the impact of sensory uncertainty on confidence and the unity of metacognitive processing across sensory modalities.


Asunto(s)
Juicio , Metacognición , Humanos , Teorema de Bayes , Incertidumbre , Simulación por Computador , Estimulación Luminosa , Percepción Visual , Percepción Auditiva
14.
J Exp Psychol Hum Percept Perform ; 49(5): 737-752, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37261777

RESUMEN

Many everyday tasks require us to integrate information from multiple steps to make a decision. Dominant accounts of flexible cognition suggest that we are able to navigate such complex tasks by attending to each step in turn, yet few studies measure how we direct our attention to immediate and future task steps. Here, we used a two-step task to test whether participants are sensitive to information that is currently irrelevant but will be relevant in a future task step. Participants viewed two displays in sequence, each containing two superimposed moving dot clouds of different colors. Participants attended to one cued target color in each display and reported the average direction of the two target dot clouds. In a subset of trials, we presented a "decoy" distractor: the second target color appeared as the distractor in the first display. We regressed behavioral responses on the dot clouds' motion directions to track how this future-relevant "decoy" distractor influenced participants' reporting of the average target direction. We compared the influence of decoy distractors to never-relevant, recently relevant, and globally relevant distractor baselines. Across four experiments, we found that responses reflected what was immediately relevant, as well as the broader historical relevance of the distractors. However, relevance for a future task step did not reliably influence attention. We propose that attention in multistep tasks is shaped by what has been relevant in the current setting, and by the immediate demands of each task step. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Cognición , Señales (Psicología) , Humanos , Tiempo de Reacción/fisiología
15.
Neuroimage ; 272: 120069, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003445

RESUMEN

Visual working memory is critical for goal-directed behavior as it maintains continuity between previous and current visual input. Functional neuroimaging studies have shown that visual working memory relies on communication between distributed brain regions, which implies an important role for long-range white matter connections in visual working memory performance. Here, we characterized the relationship between the microstructure of white matter association tracts and the precision of visual working memory representations. To that purpose, we devised a delayed estimation task which required participants to reproduce visual features along a continuous scale. A sample of 80 healthy adults performed the task and underwent diffusion-weighted MRI. We applied mixture distribution modelling to quantify the precision of working memory representations, swap errors, and guess rates, all of which contribute to observed responses. Latent components of microstructural properties in sets of anatomical tracts were identified by principal component analysis. We found an interdependency between fibre coherence in the bilateral superior longitudinal fasciculus (SLF) I, SLF II, and SLF III, on one hand, and the bilateral inferior fronto-occipital fasciculus (IFOF), on the other, in mediating the precision of visual working memory in a functionally specific manner. We also found that individual differences in axonal density in a network comprising the bilateral inferior longitudinal fasciculus (ILF) and SLF III and right SLF II, in combination with a supporting network located elsewhere in the brain, form a common system for visual working memory to modulate response precision, swap errors, and random guess rates.


Asunto(s)
Memoria a Corto Plazo , Sustancia Blanca , Adulto , Humanos , Memoria a Corto Plazo/fisiología , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Mapeo Encefálico/métodos
16.
Nat Commun ; 14(1): 1196, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864037

RESUMEN

The response of cortical neurons to sensory stimuli is shaped both by past events (adaptation) and the expectation of future events (prediction). Here we employed a visual stimulus paradigm with different levels of predictability to characterise how expectation influences orientation selectivity in the primary visual cortex (V1) of male mice. We recorded neuronal activity using two-photon calcium imaging (GCaMP6f) while animals viewed sequences of grating stimuli which either varied randomly in their orientations or rotated predictably with occasional transitions to an unexpected orientation. For single neurons and the population, there was significant enhancement in the gain of orientation-selective responses to unexpected gratings. This gain-enhancement for unexpected stimuli was prominent in both awake and anaesthetised mice. We implemented a computational model to demonstrate how trial-to-trial variability in neuronal responses were best characterised when adaptation and expectation effects were combined.


Asunto(s)
Motivación , Corteza Visual Primaria , Masculino , Animales , Ratones , Aclimatación , Calcio , Neuronas
17.
Res Sq ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36993557

RESUMEN

Neuroimaging data analysis often requires purpose-built software, which can be challenging to install and may produce different results across computing environments. Beyond being a roadblock to neuroscientists, these issues of accessibility and portability can hamper the reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk platform, which harnesses software containers to support a comprehensive and growing suite of neuroimaging software (https://www.neurodesk.org/). Neurodesk includes a browser-accessible virtual desktop environment and a command line interface, mediating access to containerized neuroimaging software libraries on various computing platforms, including personal and high-performance computers, cloud computing and Jupyter Notebooks. This community-oriented, open-source platform enables a paradigm shift for neuroimaging data analysis, allowing for accessible, flexible, fully reproducible, and portable data analysis pipelines.

18.
Proc Natl Acad Sci U S A ; 120(6): e2216192120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36724257

RESUMEN

A canonical feature of sensory systems is that they adapt to prolonged or repeated inputs, suggesting the brain encodes the temporal context in which stimuli are embedded. Sensory adaptation has been observed in the central nervous systems of many animal species, using techniques sensitive to a broad range of spatiotemporal scales of neural activity. Two competing models have been proposed to account for the phenomenon. One assumes that adaptation reflects reduced neuronal sensitivity to sensory inputs over time (the "fatigue" account); the other posits that adaptation arises due to increased neuronal selectivity (the "sharpening" account). To adjudicate between these accounts, we exploited the well-known "tilt aftereffect", which reflects adaptation to orientation information in visual stimuli. We recorded whole-brain activity with millisecond precision from human observers as they viewed oriented gratings before and after adaptation, and used inverted encoding modeling to characterize feature-specific neural responses. We found that both fatigue and sharpening mechanisms contribute to the tilt aftereffect, but that they operate at different points in the sensory processing cascade to produce qualitatively distinct outcomes. Specifically, fatigue operates during the initial stages of processing, consistent with tonic inhibition of feedforward responses, whereas sharpening occurs ~200 ms later, consistent with feedback or local recurrent activity. Our findings reconcile two major accounts of sensory adaptation, and reveal how this canonical process optimizes the detection of change in sensory inputs through efficient neural coding.


Asunto(s)
Aclimatación , Encéfalo , Animales , Humanos , Adaptación Fisiológica/fisiología , Neuronas/fisiología , Órganos de los Sentidos
19.
Neuropsychologia ; 180: 108470, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36621594

RESUMEN

While visuospatial neglect is commonly associated with damage to the right posterior parietal cortex, neglect is an anatomically heterogenous syndrome. This project presents a systematic review of 34 lesion-mapping studies reporting on the anatomical correlates of neglect. Specifically, the reported correlates of egocentric versus allocentric, acute versus chronic, personal versus extra-personal, and left versus right hemisphere neglect are summarised. The quality of each included lesion-mapping analysis was then evaluated to identify methodological factors which may help account for the reported variance in correlates of neglect. Overall, the existing literature strongly suggests that egocentric and allocentric neglect represent anatomically dissociable conditions and that the anatomy of these conditions may not be entirely homologous across hemispheres. Studies which have compared the anatomy of acute versus chronic neglect have found that these conditions are associated with distinct lesion loci, while studies comparing the correlates of peripersonal/extrapersonal neglect are split as to whether these neglect subtypes are anatomically dissociable. The included studies employed a wide range of lesion-mapping analysis techniques, each producing results of varying quality and generalisability. This review concludes that the reported underlying anatomical correlates of heterogeneous visuospatial neglect vary considerably. Future, high quality studies are needed to investigate patterns of disconnection associated with clearly defined forms of visuospatial neglect in large and representative samples.


Asunto(s)
Trastornos de la Percepción , Accidente Cerebrovascular , Humanos , Neuroanatomía , Lateralidad Funcional , Trastornos de la Percepción/patología , Percepción Espacial , Pruebas Neuropsicológicas , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Mapeo Encefálico/métodos
20.
Atten Percept Psychophys ; 85(2): 284-292, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36522567

RESUMEN

Spatial cues that mismatch the colour of a subsequent target have been shown to slow responses to targets that share their location. The source of this 'same location cost' (SLC) is currently unknown. Two potential sources are attentional signal suppression and object-file updating. Here, we tested a direct prediction of the suppression account using data from a spatial-cueing study in which we recorded brain activity using electroencephalography (EEG), and focusing on the event-related PD component, which is thought to index attentional signal suppression. Correlating PD amplitude with SLC magnitude, we tested the prediction that if attentional signal suppression is the source of the SLC, then the SLC should be positively correlated with PD amplitude. Across 48 participants, SLC and PD magnitudes were negatively correlated, in direct contradiction to a suppression account of the SLC. These results are compatible with an object-file updating account of the SLC in which updating is facilitated by reactive suppression of the to-be-updated stimulus information.


Asunto(s)
Atención , Señales (Psicología) , Humanos , Atención/fisiología , Electroencefalografía , Tiempo de Reacción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...