Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
PLoS One ; 19(4): e0300476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635668

RESUMEN

PURPOSE: To determine the effect of sex as a risk factor regarding presbyopia. METHODS: Maximum accommodation was pharmacologically induced (40% cabachol corneal iontophoresis) in 97 rhesus monkeys (49 males and 48 females) ranging in age from 8 to 36 years old. Accommodation was measured by Hartinger coincidence refractometry. RESULTS: Accommodative amplitude measured refractometrically decreased with age, and the rate of change was not different between males and females (p = 0.827). CONCLUSIONS: Presbyopia is essentially sex neutral, and no one is spared. There may be modest variations between different populations for various reasons, but essentially it is monotonously predictable. At present there is no biological therapeutic.


Asunto(s)
Cristalino , Presbiopía , Masculino , Animales , Femenino , Macaca mulatta , Acomodación Ocular , Envejecimiento
2.
Geroscience ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689157

RESUMEN

Aging per se is a major risk factor for cardiovascular diseases and is associated with progressive changes in cardiac structure and function. Rodent models are commonly used to study cardiac aging, but do not closely mirror differences as they occur in humans. Therefore, we performed a 2D echocardiographic study in non-human primates (NHP) to establish age- and sex-associated differences in cardiac function and morphometry in this animal model. M mode and 2D echocardiography and Doppler analyses were performed cross-sectionally in 38 healthy rhesus monkeys (20 females and 18 males), both young (age 7-12 years; n = 20) and old (age 19-30 years; n = 18). The diameters of the cardiac chambers did not differ significantly by age group, but males had larger left ventricular diameters (2.43 vs 2.06 cm in diastole and 1.91 vs 1.49 cm in systole, p = 0.0004 and p = 0.0001, respectively) and left atrial diameter (1.981 vs 1.732 cm; p = 0.0101). Left ventricular mass/body surface area did not vary significantly with age and sex. Ejection fraction did not differ by age and females presented a higher ejection fraction than males (54.0 vs 50.8%, p = 0.0237). Diastolic function, defined by early to late mitral peak flow velocity ratio (E/A), was significantly lower in old rhesus monkeys (2.31 vs 1.43, p = 0.0020) and was lower in females compared to males (1.595 vs 2.230, p = 0.0406). Right ventricular function, evaluated by measuring the Tricuspid Annular Plane Systolic Excursion, did not differ by age or sex, and Right Ventricular Free Wall Longitudinal Strain, did not differ with age but was lower in males than in females (-22.21 vs -17.95%, p = 0.0059). This is the first echocardiographic study to evaluate age- and sex-associated changes of cardiac morphometry and function in young and old NHP. The findings of this work will provide a reference to examine the effect of age and sex on cardiac diseases in NHP.

3.
Geroscience ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532069

RESUMEN

The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.

4.
Nat Commun ; 15(1): 1088, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316796

RESUMEN

Dietary restriction has shown benefits in physiological, metabolic, and molecular signatures associated with aging but is a difficult lifestyle to maintain for most individuals. In mice, a less restrictive diet that allows for cyclical periods of reduced calories mitigates aging phenotypes, yet the effects of such an intervention in a genetically heterogenous, higher-order mammal has not been examined. Here, using middle-aged rhesus macaques matched for age and sex, we show that a regimen of 4 days of low-calorie intake followed by 10 days of ad libitum feeding (4:10 diet) performed in repeating cycles over 12 weeks led to significant loss of weight and fat percentage, despite the free access to food for most of the study duration. We show the 4-day restriction period is sufficient to drive alterations to the serum metabolome characterized by substantial differences in lipid classes. These phenotypes were paralleled by changes in the gut microbiome of restricted monkeys that highlight the involvement of a microbiome-metabolome axis. This regimen shows promising phenotypes, with some sex-dimorphic responses, including residual memory of the diet. As many calorie restriction interventions are difficult to sustain, we propose that this short-term diet may be easier to adhere to and have benefits directly relevant to human aging.


Asunto(s)
Ingestión de Energía , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Persona de Mediana Edad , Macaca mulatta , Ingestión de Energía/fisiología , Restricción Calórica , Metaboloma , Mamíferos
5.
Cell Metab ; 35(7): 1114-1131, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37392742

RESUMEN

An epidemic of obesity has affected large portions of the world, increasing the risk of developing many different age-associated diseases, including cancer, cardiovascular disease, and diabetes. In contrast with the prevailing notion that "a calorie is just a calorie," there are clear differences, within and between individuals, in the metabolic response to different macronutrient sources. Recent findings challenge this oversimplification; calories from different macronutrient sources or consumed at different times of day have metabolic effects beyond their value as fuel. Here, we summarize discussions conducted at a recent NIH workshop that brought together experts in calorie restriction, macronutrient composition, and time-restricted feeding to discuss how dietary composition and feeding schedule impact whole-body metabolism, longevity, and healthspan. These discussions may provide insights into the long-sought molecular mechanisms engaged by calorie restriction to extend lifespan, lead to novel therapies, and potentially inform the development of a personalized food-as-medicine approach to healthy aging.


Asunto(s)
Envejecimiento Saludable , Humanos , Ingestión de Energía , Dieta , Restricción Calórica , Obesidad , Longevidad/fisiología
6.
Geroscience ; 45(6): 3187-3209, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37493860

RESUMEN

Age and sex have a profound effect on cytosine methylation levels in humans and many other species. Here we analyzed DNA methylation profiles of 2400 tissues derived from 37 primate species including 11 haplorhine species (baboons, marmosets, vervets, rhesus macaque, chimpanzees, gorillas, orangutan, humans) and 26 strepsirrhine species (suborders Lemuriformes and Lorisiformes). From these we present here, pan-primate epigenetic clocks which are highly accurate for all primates including humans (age correlation R = 0.98). We also carried out in-depth analysis of baboon DNA methylation profiles and generated five epigenetic clocks for baboons (Olive-yellow baboon hybrid), one of which, the pan-tissue epigenetic clock, was trained on seven tissue types (fetal cerebral cortex, adult cerebral cortex, cerebellum, adipose, heart, liver, and skeletal muscle) with ages ranging from late fetal life to 22.8 years of age. Using the primate data, we characterize the effect of age and sex on individual cytosines in highly conserved regions. We identify 11 sex-related CpGs on autosomes near genes (POU3F2, CDYL, MYCL, FBXL4, ZC3H10, ZXDC, RRAS, FAM217A, RBM39, GRIA2, UHRF2). Low overlap can be observed between age- and sex-related CpGs. Overall, this study advances our understanding of conserved age- and sex-related epigenetic changes in primates, and provides biomarkers of aging for all primates.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Animales , Macaca mulatta/genética , Envejecimiento/genética , Papio , Ubiquitina-Proteína Ligasas , Proteínas Portadoras
7.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37097759

RESUMEN

Senescent vascular smooth muscle cells (VSMCs) accumulate in the vasculature with age and tissue damage and secrete factors that promote atherosclerotic plaque vulnerability and disease. Here, we report increased levels and activity of dipeptidyl peptidase 4 (DPP4), a serine protease, in senescent VSMCs. Analysis of the conditioned media from senescent VSMCs revealed a unique senescence-associated secretory phenotype (SASP) signature comprising many complement and coagulation factors; silencing or inhibiting DPP4 reduced these factors and increased cell death. Serum samples from persons with high risk for cardiovascular disease contained high levels of DPP4-regulated complement and coagulation factors. Importantly, DPP4 inhibition reduced senescent cell burden and coagulation and improved plaque stability, while single-cell resolution of senescent VSMCs reflected the senomorphic and senolytic effects of DPP4 inhibition in murine atherosclerosis. We propose that DPP4-regulated factors could be exploited therapeutically to reduce senescent cell function, reverse senohemostasis, and improve vascular disease.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/genética , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Senescencia Celular/genética , Músculo Liso Vascular/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo
8.
Geroscience ; 45(4): 2337-2349, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36897526

RESUMEN

17α-estradiol has recently been shown to extend healthspan and lifespan in male mice through multiple mechanisms. These benefits occur in the absence of significant feminization or deleterious effects on reproductive function, which makes 17α-estradiol a candidate for translation into humans. However, human dosing paradigms for the treatment of aging and chronic disease are yet to be established. Therefore, the goals of the current studies were to assess tolerability of 17α-estradiol treatment, in addition to evaluating metabolic and endocrine responses in male rhesus macaque monkeys during a relatively short treatment period. We found that our dosing regimens (0.30 and 0.20 mg/kg/day) were tolerable as evidenced by a lack of GI distress, changes in blood chemistry or complete blood counts, and unaffected vital signs. We also found that the higher dose did elicit mild benefits on metabolic parameters including body mass, adiposity, and glycosylated hemoglobin. However, both of our 17α-estradiol trial doses elicited significant feminization to include testicular atrophy, increased circulating estrogens, and suppressed circulating androgens and gonadotropins. We suspect that the observed level of feminization results from a saturation of the endogenous conjugation enzymes, thereby promoting a greater concentration of unconjugated 17α-estradiol in serum, which has more biological activity. We also surmise that the elevated level of unconjugated 17α-estradiol was subjected to a greater degree of isomerization to 17ß-estradiol, which is aligned with the sevenfold increase in serum 17ß-estradiol in 17α-estradiol treated animals in our first trial. Future studies in monkeys, and certainly humans, would likely benefit from the development and implementation of 17α-estradiol transdermal patches, which are commonly prescribed in humans and would circumvent potential issues with bolus dosing effects.


Asunto(s)
Estradiol , Feminización , Humanos , Masculino , Ratones , Animales , Macaca mulatta , Envejecimiento
9.
J Diet Suppl ; 20(4): 563-581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35229700

RESUMEN

Mitochondrial biogenesis and destruction in skeletal muscle are coordinated by distinct signaling pathways that are influenced by internal and exogenous variables including, but not limited to, muscle phenotype, physical activity, dietary composition, or drug administration. Previously we found that long-term resveratrol administration (up to 480 mg/day) ameliorates the slow-to-fast phenotypic shift in soleus muscles and promotes the expression in slow myosin heavy chain in the mixed plantaris muscle of non-human primates consuming a high fat/sugar (HFS) diet. Here, we expand on these earlier findings by examining whether mitochondrial content and the markers that dictate their biogenesis and mitophagy/autophagy are similarly affected by HFS and/or influenced by resveratrol while consuming this diet (HFSR). Compared to controls (n = 9), there was a ∼20-25% decrease in mitochondrial content in HFS (n = 8) muscles as reflected in the COX2- and CYTB-to-GAPDH ratios using PCR analysis, which was blunted by resveratrol in HFSR (n = 7) soleus and, to a lesser degree, in plantaris muscles. A ∼1.5 and 3-fold increase in Rev-erb-α protein was detected in HFSR soleus and plantaris muscles compared to controls, respectively. Unlike in HFSR animals, HFS soleus and plantaris muscles exhibited a ∼2-fold elevation in phosphor-AMPKα (Thr172). HFS soleus muscles had elevated phosphorylated-to-total TANK binding protein-1 (TBK1) ratio suggesting an enhancement in mito/autophagic events. Taken together, resveratrol appears to blunt mitochondrial losses with a high fat/sugar diet by tempering mito/autophagy rather than promoting mitochondrial biogenesis, suggesting that the quantity of daily resveratrol supplement ingested and/or its long-term consumption are important considerations.Supplemental data for this article is available online at http://dx.doi.org/ .


Asunto(s)
Músculo Esquelético , Azúcares , Animales , Resveratrol/farmacología , Azúcares/metabolismo , Músculo Esquelético/fisiología , Primates , Fenotipo
10.
Blood ; 140(16): 1774-1789, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35714307

RESUMEN

Individuals with age-related clonal hematopoiesis (CH) are at greater risk for hematologic malignancies and cardiovascular diseases. However, predictive preclinical animal models to recapitulate the spectrum of human CH are lacking. Through error-corrected sequencing of 56 human CH/myeloid malignancy genes, we identified natural CH driver mutations in aged rhesus macaques matching genes somatically mutated in human CH, with DNMT3A mutations being the most frequent. A CH model in young adult macaques was generated via autologous transplantation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene-edited hematopoietic stem and progenitor cells (HSPCs), targeting the top human CH genes with loss-of-function (LOF) mutations. Long-term follow-up revealed reproducible and significant expansion of multiple HSPC clones with heterozygous TET2 LOF mutations, compared with minimal expansion of clones bearing other mutations. Although the blood counts of these CH macaques were normal, their bone marrows were hypercellular and myeloid-predominant. TET2-disrupted myeloid colony-forming units isolated from these animals showed a distinct hyperinflammatory gene expression profile compared with wild type. In addition, mature macrophages purified from the CH macaques showed elevated NLRP3 inflammasome activity and increased interleukin-1ß (IL-1ß) and IL-6 production. The model was used to test the impact of IL-6 blockage by tocilizumab, documenting a slowing of TET2-mutated expansion, suggesting that interruption of the IL-6 axis may remove the selective advantage of mutant HSPCs. These findings provide a model for examining the pathophysiology of CH and give insights into potential therapeutic interventions.


Asunto(s)
Hematopoyesis Clonal , Dioxigenasas , Humanos , Adulto Joven , Animales , Anciano , Hematopoyesis Clonal/genética , Hematopoyesis/genética , Interleucina-1beta/genética , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Macaca mulatta , Proteína 9 Asociada a CRISPR , Interleucina-6/genética , Células Clonales , Proteínas de Unión al ADN/genética , Dioxigenasas/genética
11.
Cell Rep ; 39(3): 110725, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443183

RESUMEN

Older individuals are at increased risk of developing severe respiratory infections. However, our understanding of the impact of aging on the respiratory tract remains limited as samples from healthy humans are challenging to obtain and results can be confounded by variables such as smoking and diet. Here, we carry out a comprehensive cross-sectional study (n = 34 adult, n = 49 aged) to define the consequences of aging on the lung using the rhesus macaque model. Pulmonary function testing establishes similar age and sex differences as humans. Additionally, we report increased abundance of alveolar and infiltrating macrophages and a concomitant decrease in T cells were in aged animals. scRNAseq reveals shifts from GRZMB to IFN expressing CD8+ T cells in the lungs. These data provide insight into age-related changes in the lungs' functional, microbial, and immunological landscape that explain increased prevalence and severity of respiratory diseases in the elderly.


Asunto(s)
Linfocitos T CD8-positivos , Pulmón , Envejecimiento , Animales , Estudios Transversales , Femenino , Macaca mulatta , Masculino
12.
Geroscience ; 44(2): 699-717, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34591235

RESUMEN

DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets.


Asunto(s)
Epigénesis Genética , Epigenómica , Animales , Chlorocebus aethiops , Metilación de ADN , Longevidad , Macaca mulatta/genética , Mamíferos
13.
Nat Commun ; 12(1): 6463, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753921

RESUMEN

Diet composition, calories, and fasting times contribute to the maintenance of health. However, the impact of very low-calorie intake (VLCI) achieved with either standard laboratory chow (SD) or a plant-based fasting mimicking diet (FMD) is not fully understood. Here, using middle-aged male mice we show that 5 months of short 4:10 VLCI cycles lead to decreases in both fat and lean mass, accompanied by improved physical performance and glucoregulation, and greater metabolic flexibility independent of diet composition. A long-lasting metabolomic reprograming in serum and liver is observed in mice on VLCI cycles with SD, but not FMD. Further, when challenged with an obesogenic diet, cycles of VLCI do not prevent diet-induced obesity nor do they elicit a long-lasting metabolic memory, despite achieving modest metabolic flexibility. Our results highlight the importance of diet composition in mediating the metabolic benefits of short cycles of VLCI.


Asunto(s)
Ingestión de Energía/fisiología , Obesidad/metabolismo , Animales , Restricción Calórica , Masculino , Ratones , Obesidad/genética
14.
Geroscience ; 43(5): 2441-2453, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487267

RESUMEN

Methylation levels at specific CpG positions in the genome have been used to develop accurate estimators of chronological age in humans, mice, and other species. Although epigenetic clocks are generally species-specific, the principles underpinning them appear to be conserved at least across the mammalian class. This is exemplified by the successful development of epigenetic clocks for mice and several other mammalian species. Here, we describe epigenetic clocks for the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate in biological research. Using a custom methylation array (HorvathMammalMethylChip40), we profiled n = 281 tissue samples (blood, skin, adipose, kidney, liver, lung, muscle, and cerebral cortex). From these data, we generated five epigenetic clocks for macaques. These clocks differ with regard to applicability to different tissue types (pan-tissue, blood, skin), species (macaque only or both humans and macaques), and measure of age (chronological age versus relative age). Additionally, the age-based human-macaque clock exhibits a high age correlation (R = 0.89) with the vervet monkey (Chlorocebus sabaeus), another Old World species. Four CpGs within the KLF14 promoter were consistently altered with age in four tissues (adipose, blood, cerebral cortex, skin). Future studies will be needed to evaluate whether these epigenetic clocks predict age-related conditions in the rhesus macaque.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Macaca mulatta , Envejecimiento , Animales , Chlorocebus aethiops , Epigenómica , Macaca mulatta/genética , Regiones Promotoras Genéticas
15.
Geroscience ; 43(5): 2413-2425, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482522

RESUMEN

Human DNA methylation data have previously been used to develop highly accurate biomarkers of aging ("epigenetic clocks"). Subsequent studies demonstrate that similar epigenetic clocks can also be developed for mice and many other mammals. Here, we describe epigenetic clocks for common marmosets (Callithrix jacchus) based on novel DNA methylation data generated from highly conserved mammalian CpGs that were profiled using a custom Infinium array (HorvathMammalMethylChip40). From these, we developed and present here two epigenetic clocks for marmosets that are applicable to whole blood samples. We find that the human-marmoset clock for relative age exhibits moderately high age correlations in two other non-human primate species: vervet monkeys and rhesus macaques. In a separate cohort of marmosets, we tested whether intervention with rapamycin, a drug shown to extend lifespan in mice, would alter the epigenetic age of marmosets, as measured by the marmoset epigenetic clocks. These clocks did not detect significant effects of rapamycin on the epigenetic age of marmoset blood. The common marmoset stands out from other mammals in that it is not possible to build accurate estimators of sex based on DNA methylation data: the accuracy of a random forest predictor of sex (66%) was substantially lower than that observed for other mammals (which is close to 100%). Overall, the epigenetic clocks developed here for the common marmoset are expected to be useful for age estimation of wild-born animals and for anti-aging studies in this species.


Asunto(s)
Callithrix , Metilación de ADN , Animales , Chlorocebus aethiops , Epigénesis Genética , Macaca mulatta , Ratones , Sirolimus/farmacología
16.
Cell Metab ; 33(11): 2189-2200.e3, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34508697

RESUMEN

Aging leads to profound changes in glucose homeostasis, weight, and adiposity, which are considered good predictors of health and survival in humans. Direct evidence that these age-associated metabolic alterations are recapitulated in animal models is lacking, impeding progress to develop and test interventions that delay the onset of metabolic dysfunction and promote healthy aging and longevity. We compared longitudinal trajectories, rates of change, and mortality risks of fasting blood glucose, body weight, and fat mass in mice, nonhuman primates, and humans throughout their lifespans and found similar trajectories of body weight and fat in the three species. In contrast, fasting blood glucose decreased late in life in mice but increased over the lifespan of nonhuman primates and humans. Higher glucose was associated with lower mortality in mice but higher mortality in nonhuman primates and humans, providing a cautionary tale for translating age-associated metabolic changes from mice to humans.


Asunto(s)
Glucemia , Ayuno , Adiposidad , Animales , Glucemia/metabolismo , Longevidad , Ratones , Obesidad/metabolismo
17.
Front Immunol ; 12: 647398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717202

RESUMEN

HIV-associated inflammation has been implicated in the premature aging and increased risk of age-associated comorbidities in cART-treated individuals. However, the immune mechanisms underlying the chronic inflammatory state of cART-suppressed HIV infection remain unclear. Here, we investigated the role of γδT cells, a group of innate IL-17 producing T lymphocytes, in the development of systemic inflammation and leaky gut phenotype during cART-suppressed SIV infection of macaques. Plasma levels of inflammatory mediators, intestinal epithelial barrier disruption (IEBD) and microbial translocation (MT) biomarkers, and Th1/Th17-type cytokine functions were longitudinally assessed in blood and gut mucosa of SIV-infected, cART-suppressed macaques. Among the various gut mucosal IL-17/IL-22-producing T lymphocyte subsets including Th17, γδT, CD161+ CD8+ T, and MAIT cells, a specific decline in the Vδ2 subset of γδT cells and impaired IL-17/IL-22 production in γδT cells significantly correlated with the subsequent increase in plasma IEBD/MT markers (IFABP, LPS-binding protein, and sCD14) and pro-inflammatory cytokines (IL-6, IL-1ß, IP10, etc.) despite continued viral suppression during long-term cART. Further, the plasma inflammatory cytokine signature during long-term cART was distinct from acute SIV infection and resembled the inflammatory cytokine profile of uninfected aging (inflammaging) macaques. Overall, our data suggest that during cART-suppressed chronic SIV infection, dysregulation of IL-17/IL-22 cytokine effector functions and decline of Vδ2 γδT cell subsets may contribute to gut epithelial barrier disruption and development of a distinct plasma inflammatory signature characteristic of inflammaging. Our results advance the current understanding of the impact of chronic HIV/SIV infection on γδT cell functions and demonstrate that in the setting of long-term cART, the loss of epithelial barrier-protective functions of Vδ2 T cells and ensuing IEBD/MT occurs before the hallmark expansion of Vδ1 subsets and skewed Vδ2/Vδ1 ratio. Thus, our work suggests that novel therapeutic approaches toward restoring IL-17/IL-22 cytokine functions of intestinal Vδ2 T cells may be beneficial in preserving gut epithelial barrier function and reducing chronic inflammation in HIV-infected individuals.


Asunto(s)
Antirretrovirales/uso terapéutico , Interleucina-17/sangre , Interleucinas/sangre , Mucosa Intestinal/inmunología , Linfocitos Intraepiteliales/inmunología , Enfermedades de los Monos/tratamiento farmacológico , Enfermedades de los Monos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios , Animales , Biomarcadores/sangre , Enfermedad Crónica/tratamiento farmacológico , Quimioterapia Combinada/métodos , Femenino , Inflamación/sangre , Inflamación/inmunología , Macaca mulatta , Enfermedades de los Monos/virología , Transducción de Señal/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/sangre , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Interleucina-22
18.
Aging Pathobiol Ther ; 2(1): 16-19, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33283205

RESUMEN

A geropathology grading platform (GGP) for assessing age-related lesions has been established and validated for in inbred strain of mice. Because nonhuman primates (NHPs) share significant similarities in aging and spontaneous chronic diseases with humans, they provide excellent translational value for correlating histopathology with biological and pathological events associated with increasing age. Descriptive age-associated pathology has been described for rhesus macaques and marmosets, but a grading platform similar to the mouse GGP does not exist. The value of these NHP models is enhanced by considerable historical data from clinical, bio-behavioral, and social domains that align with health span in these animals. Successful adaptation of the mouse GGP for NHPs will include 1) expanding the range of organs examined; 2) standardizing necropsy collection, tissue trimming, and descriptive lesion terminology; 3) expanding beyond rhesus macaques and marmosets to include other commonly used NHPs in research; and 4) creating a national resource for age-related pathology to complement the extensive in-life datasets. Adaptation of the GGP to include translational models other than mice will be crucial to advance geropathology designed to enhance aging research.

19.
Aging (Albany NY) ; 12(12): 11185-11199, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32575074

RESUMEN

Humanin is a member of a new family of peptides that are encoded by short open reading frames within the mitochondrial genome. It is conserved in animals and is both neuroprotective and cytoprotective. Here we report that in C. elegans the overexpression of humanin is sufficient to increase lifespan, dependent on daf-16/Foxo. Humanin transgenic mice have many phenotypes that overlap with the worm phenotypes and, similar to exogenous humanin treatment, have increased protection against toxic insults. Treating middle-aged mice twice weekly with the potent humanin analogue HNG, humanin improves metabolic healthspan parameters and reduces inflammatory markers. In multiple species, humanin levels generally decline with age, but here we show that levels are surprisingly stable in the naked mole-rat, a model of negligible senescence. Furthermore, in children of centenarians, who are more likely to become centenarians themselves, circulating humanin levels are much greater than age-matched control subjects. Further linking humanin to healthspan, we observe that humanin levels are decreased in human diseases such as Alzheimer's disease and MELAS (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes). Together, these studies are the first to demonstrate that humanin is linked to improved healthspan and increased lifespan.


Asunto(s)
Enfermedad de Alzheimer/sangre , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Longevidad/fisiología , Síndrome MELAS/sangre , Mitocondrias/metabolismo , Adulto , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estudios de Casos y Controles , Niño , Estudios de Cohortes , ADN Mitocondrial/genética , Femenino , Factores de Transcripción Forkhead/metabolismo , Dosificación de Gen , Humanos , Recién Nacido , Péptidos y Proteínas de Señalización Intracelular/sangre , Péptidos y Proteínas de Señalización Intracelular/genética , Síndrome MELAS/metabolismo , Macaca mulatta , Ratones , Persona de Mediana Edad , Modelos Animales , Ratas Topo , Embarazo , Adulto Joven
20.
Cell Metab ; 32(1): 100-116.e4, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32413334

RESUMEN

The impact of chronic caloric restriction (CR) on health and survival is complex with poorly understood underlying molecular mechanisms. A recent study in mice addressing the diets used in nonhuman primate CR studies found that while diet composition did not impact longevity, fasting time and total calorie intake were determinant for increased survival. Here, integrated analysis of physiological and multi-omics data from ad libitum, meal-fed, or CR animals was used to gain insight into pathways associated with improved health and survival. We identified a potential involvement of the glycine-serine-threonine metabolic axis in longevity and related molecular mechanisms. Direct comparison of the different feeding strategies unveiled a pattern of shared pathways of improved health that included short-chain fatty acids and essential PUFA metabolism. These findings were recapitulated in the serum metabolome from nonhuman primates. We propose that the pathways identified might be targeted for their potential role in healthy aging.


Asunto(s)
Restricción Calórica , Ácidos Grasos Insaturados/metabolismo , Glicina/metabolismo , Longevidad , Serina/metabolismo , Treonina/metabolismo , Animales , Femenino , Glucosa/análisis , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...