Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 12: 645138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897602

RESUMEN

The present study describes the electroencephalographic changes that occur during cerebral ischemia and reperfusion in animals submitted to transient focal cerebral ischemia by middle cerebral artery occlusion (MCAO) for 30 min. For this, male Wistar rats were divided into two groups (n = 6 animals/group): (1) sham (control) group, and (2) ischemic/reperfusion group. The quantitative electroencephalography (qEEG) was recorded during the ischemic and immediate reperfusion (acute) phases, and then once a day for 7 days after the MCAO (subacute phase). The acute phase was characterized by a marked increase in the relative delta wave band power (p < 0.001), with a smaller, but significant increase in the relative alpha wave bandpower in the ischemic stroke phase, in comparison with the control group (p = 0.0054). In the immediate reperfusion phase, however, there was an increase in the theta, alpha, and beta waves bandpower (p < 0.001), but no alteration in the delta waves (p = 0.9984), in comparison with the control group. We also observed high values in the delta/theta ratio (DTR), the delta/alpha ratio (DAR), and the (delta+theta)/(alpha+beta) ratio (DTABR) indices during the ischemia (p < 0.05), with a major reduction in the reperfusion phase. In the subacute phase, the activity of all the waves was lower than that of the control group (p < 0.05), although the DTR, DAR, and DTABR indices remained relatively high. In conclusion, early and accurate identification of decreased delta wave bandpower, DTR, DAR, and DTABR indices, and an increase in the activity of other waves in the immediate reperfusion phase may represent an important advance for the recognition of the effectiveness of reperfusion therapy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-31616380

RESUMEN

Testosterone is responsible for several changes in the brain, including behavioral and emotional responses, memory, and cognition. Given this, we investigated changes in the brain wave profile caused by supplementation with exogenous testosterone in both castrated and non-castrated rats. We also investigated the serum testosterone levels, renal and hepatic function, and the lipid and behavioral profiles. We found changes in the spectral wave power in both groups (castrated and non-castrated animals) supplemented with exogenous testosterone, consistent with an aggressive/hostile profile. These changes were observed in the electrocorticographic evaluation associated with increased power in low-frequency (delta and theta) and high-frequency (beta and gamma) activity in the supplemented animals. The castrated animals presented a significant decrease of wave power in the alpha frequency. This correlated with a decrease of the performance of the animals in the elevated plus-maze evaluation, given that the alpha wave is linked to the execution and visualization of motor processes. In the behavioral evaluation, the castrated animals presented a reduced permanence time in the elevated-plus maze, although this was prevented by the supplementation of testosterone. Testosterone supplementation induced aggressive behavior in non-castrated animals, but not in castrated ones. Supplemented animals had significantly elevated serum testosterone levels, while their urea levels were significantly lower, but without clinical significance. Our data indicate that testosterone supplementation in non-castrated rats, but not in castrated ones, causes electrocorticographic changes that could be associated with more aggressive and hostile behavior, in addition to indicating a potential for personality disorder. However, further studies are required to elucidate the cellular and molecular changes caused by acute testosterone supplementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...