Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med ; 30(4): 448-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24440536

RESUMEN

PURPOSE: Monte Carlo study of radiation transmission around areas surrounding a PET room. METHODS: An extended population of patients administered with (18)F-FDG for PET-CT investigations was studied, collecting air kerma rate and gamma ray spectra measurements at a reference distance. An MC model of the diagnostic room was developed, including the scanner and walls with variable material and thickness. MC simulations were carried out with the widely used code GEANT4. RESULTS: The model was validated by comparing simulated radiation dose values and gamma ray spectra produced by a volumetric source with experimental measurements; ambient doses in the surrounding areas were assessed for different combinations of wall materials and shielding and compared with analytical calculations, based on the AAPM Report 108. In the range 1.5-3.0 times of the product between the linear attenuation coefficient and thickness of an absorber (µ x), it was observed that the effectiveness of different combinations of shielding is roughly equivalent. An extensive tabulation of results is given in the text. CONCLUSIONS: The validation tests performed showed a satisfactory agreement between the simulated and expected results. The simulated dose rates incident on, and transmitted by the walls in our model of PET scanner room, are generally in good agreement with analytical estimates performed using the AAPM Publication No. 108 method. This provides an independent confirmation of AAPM's approach. Even in this specific field of application, GEANT4 proved to be a relevant and accurate tool for dosimetry estimates, shielding evaluation and for general radiation protection use.


Asunto(s)
Método de Montecarlo , Tomografía de Emisión de Positrones/instrumentación , Fluorodesoxiglucosa F18 , Rayos gamma , Humanos , Tomografía de Emisión de Positrones/efectos adversos , Protección Radiológica , Radiometría , Tomografía Computarizada por Rayos X/efectos adversos
2.
Plant Physiol ; 123(1): 3-16, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10806220

RESUMEN

We describe the development and utilization of a new imaging technology for plant biology, optical coherence microscopy (OCM), which allows true in vivo visualization of plants and plant cells. This novel technology allows the direct, in situ (e.g. plants in soil), three-dimensional visualization of cells and events in shoot tissues without causing damage. With OCM we can image cells or groups of cells that are up to 1 mm deep in living tissues, resolving structures less than 5 microm in size, with a typical collection time of 5 to 6 min. OCM measures the inherent light-scattering properties of biological tissues and cells. These optical properties vary and provide endogenous developmental markers. Singly scattered photons from small (e.g. 5 x 5 x 10 microm) volume elements (voxels) are collected, assembled, and quantitatively false-colored to form a three-dimensional image. These images can be cropped or sliced in any plane. Adjusting the colors and opacities assigned to voxels allows us to enhance different features within the tissues and cells. We show that light-scattering properties are the greatest in regions of the Arabidopsis shoot undergoing developmental processes. In large cells, high light scattering is produced from nuclei, intermediate light scatter is produced from cytoplasm, and little if any light scattering originates from the vacuole and cell wall. OCM allows the rapid, repetitive, non-destructive collection of quantitative data about inherent properties of cells, so it provides a means of continuously monitoring plants and plant cells during development and in response to exogenous stimuli.


Asunto(s)
Microscopía/métodos , Células Vegetales , Mutación , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA