Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3375, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291203

RESUMEN

Osteosarcoma (OS) remains a dismal malignancy in children and young adults, with poor outcome for metastatic and recurrent disease. Immunotherapies in OS are not as promising as in some other cancer types due to intra-tumor heterogeneity and considerable off-target expression of the potentially targetable proteins. Here we show that chimeric antigen receptor (CAR) T cells could successfully target an isoform of alkaline phosphatase, ALPL-1, which is highly and specifically expressed in primary and metastatic OS. The target recognition element of the second-generation CAR construct is based on two antibodies, previously shown to react against OS. T cells transduced with these CAR constructs mediate efficient and effective cytotoxicity against ALPL-positive cells in in vitro settings and in state-of-the-art in vivo orthotopic models of primary and metastatic OS, without unexpected toxicities against hematopoietic stem cells or healthy tissues. In summary, CAR-T cells targeting ALPL-1 show efficiency and specificity in treating OS in preclinical models, paving the path for clinical translation.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Niño , Humanos , Inmunoterapia Adoptiva , Linfocitos T , Inmunoterapia , Osteosarcoma/terapia , Neoplasias Óseas/terapia , Línea Celular Tumoral , Fosfatasa Alcalina
2.
Int J Mol Sci ; 19(10)2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262720

RESUMEN

Activation of the mineralocorticoid receptor (MR) in the heart is considered to be a cardiovascular risk factor. MR activation leads to heart hypertrophy and arrhythmia. In ventricular cardiomyocytes, aldosterone induces a profound remodeling of ion channel expression, in particular, an increase in the expression and activity of T-type voltage-gated calcium channels (T-channels). The molecular mechanisms immediately downstream from MR activation, which lead to the increased expression of T-channels and, consecutively, to an acceleration of spontaneous cell contractions in vitro, remain poorly investigated. Here, we investigated the putative role of a specific microRNA in linking MR activation to the regulation of T-channel expression and cardiomyocyte beating frequency. A screening assay identified microRNA 204 (miR-204) as one of the major upregulated microRNAs after aldosterone stimulation of isolated neonatal rat cardiomyocytes. Aldosterone significantly increased the level of miR-204, an effect blocked by the MR antagonist spironolactone. When miR-204 was overexpressed in isolated cardiomyocytes, their spontaneous beating frequency was significantly increased after 24 h, like upon aldosterone stimulation, and messenger RNAs coding T-channels (CaV3.1 and CaV3.2) were increased. Concomitantly, T-type calcium currents were significantly increased upon miR-204 overexpression. Specifically repressing the expression of miR-204 abolished the aldosterone-induced increase of CaV3.1 and CaV3.2 mRNAs, as well as T-type calcium currents. Finally, aldosterone and miR-204 overexpression were found to reduce REST-NRSF, a known transcriptional repressor of CaV3.2 T-type calcium channels. Our study thus strongly suggests that miR-204 expression stimulated by aldosterone promotes the expression of T-channels in isolated rat ventricular cardiomyocytes, and therefore, increases the frequency of the cell spontaneous contractions, presumably through the inhibition of REST-NRSF protein.


Asunto(s)
Canales de Calcio Tipo T/genética , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Potenciales de Acción , Aldosterona/farmacología , Animales , Canales de Calcio Tipo T/metabolismo , Células Cultivadas , MicroARNs/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Ratas , Ratas Wistar
3.
J Control Release ; 212: 10-8, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26074149

RESUMEN

Bio-nanocapsules (BNCs) are a hollow nanoparticle consisting of about 100-nm liposome (LP) embedding about 110 molecules of hepatitis B virus (HBV) surface antigen (HBsAg) L protein as a transmembrane protein. Owing to the human hepatocyte-recognizing domains on the N-terminal region (pre-S1 region), BNCs have recently been shown to attach and enter into human hepatic cells using the early infection mechanism of HBV. Since BNCs could form a complex with an LP containing various drugs and genes, BNC-LP complexes have been used as a human hepatic cell-specific drug and gene-delivery system in vitro and in vivo. However, the role of BNCs in cell entry and intracellular trafficking of payloads in BNC-LP complexes has not been fully elucidated. In this study, we demonstrate that low pH-dependent fusogenic activity resides in the N-terminal part of pre-S1 region (NPLGFFPDHQLDPAFG), of which the first FF residues are essential for the activity, and which facilitates membrane fusion between LPs in vitro. Moreover, BNC-LP complexes can bind human hepatic cells specifically, enter into the cells via clathrin-mediated endocytosis, and release their payloads mostly into the cytoplasm. Taken together, the BNC portion of BNC-LP complexes can induce membrane fusion between LPs and endosomal membranes under low pH conditions, and thereby facilitate the endosomal escape of payloads. Furthermore, the fusogenic domain of the pre-S1 region of HBsAg L protein may play a pivotal role in the intracellular trafficking of not only BNC-LP complexes but also of HBV.


Asunto(s)
Nanocápsulas/administración & dosificación , Saccharomyces cerevisiae , Proteínas del Envoltorio Viral/química , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Endocitosis , Humanos , Liposomas , Ratones
4.
Int J Pharm ; 490(1-2): 316-23, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26027493

RESUMEN

Cationic liposomes (LPs) have been utilized for short interfering RNA (siRNA) delivery in vitro and in vivo owing to their high affinity for siRNA via electrostatic binding. However, both cytotoxicity and non-specific adsorption of cationic LPs in the body have prevented clinical siRNA applications. These situations have led to siRNA encapsulation in non-cationic LPs. We found that the instillation of neutral phospholipids dissolved in ethanol into aqueous solutions containing siRNA and CaCl2 resulted in high siRNA encapsulation (siRNA encapsulation efficiency: ∼ 80%; siRNA weight ratio: ∼ 10 wt% of LPs). The products were monodispersed, ∼ 200 nm, and negatively charged. Furthermore, when phospholipids with a high-phase transition temperature or cholesterol were used, the encapsulation efficiency and siRNA content remained high. Although anionic LPs could not encapsulate siRNAs using this method, the use of cholesterol-conjugated siRNA helped achieve substantial siRNA encapsulation in anionic LPs. These non-cationic siRNA-containing LPs did not show cytotoxicity in vitro, and could be formed with polyethylene glycol-conjugated phospholipids. When conjugated with targeting ligand, the non-cationic siRNA-containing LPs could suppress the expression of target gene in vitro. These data demonstrate that our preparation method would be suitable for large-scale LP production for systemic siRNA delivery.


Asunto(s)
Cationes/química , Liposomas/química , ARN Interferente Pequeño/química , Aniones/química , Colesterol/química , Fosfolípidos/química , Polietilenglicoles/química , Interferencia de ARN , Soluciones/química , Transfección/métodos , Temperatura de Transición
5.
J Phys Chem B ; 118(41): 11873-85, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25247388

RESUMEN

Channelrhodopsins (ChRs) are of great interest currently because of their important applications in optogenetics, the photostimulation of neurons. The absorption and circular dichroism (CD) spectra of C1C2, a chimera of ChR1 and ChR2 of Chlamydomonas reinhardtii, have been studied experimentally and theoretically. The visible absorption spectrum of C1C2 shows vibronic fine structure in the 470 nm band, consistent with the relatively nonpolar binding site. The CD spectrum has a negative band at 492 nm (Δε(max) = -6.17 M(-1) cm(-1)) and a positive band at 434 nm (Δε(max) = +6.65 M(-1) cm(-1)), indicating exciton coupling within the C1C2 dimer. Time-dependent density functional theory (TDDFT) calculations are reported for three models of the C1C2 chromophore: (1) the isolated protonated retinal Schiff base (retPSB); (2) an ion pair, including the retPSB chromophore, two carboxylate side chains (Asp 292, Glu 162), modeled by acetate, and a water molecule; and (3) a hybrid quantum mechanical/molecular mechanical (QM/MM) model depicting the binding pocket, in which the QM part consists of the same ion pair as that in (2) and the MM part consists of the protein residues surrounding the ion pair within 10 Å. For each of these models, the CD of both the monomer and the dimer was calculated with TDDFT. For the dimer, DeVoe polarizability theory and exciton calculations were also performed. The exciton calculations were supplemented by calculations of the coupling of the retinal transition with aromatic and peptide group transitions. For the dimer, all three methods and three models give a long-wavelength C2-axis-polarized band, negative in CD, and a short-wavelength band polarized perpendicular to the C2 axis with positive CD, differing in wavelength by 1-5 nm. Only the retPSB model gives an exciton couplet that agrees qualitatively with experiment. The other two models give a predominantly or solely positive band. We further analyze an N-terminal truncated mutant because it was assumed that the N-terminal domain has a crucial role in the dimerization of ChRs. However, the CD spectrum of this mutant has an exciton couplet comparable to that of the wild-type, demonstrating that it is dimeric. Patch-clamp experiments suggest that the N-terminal domain is involved in protein stabilization and channel kinetics rather than dimerization or channel activity.


Asunto(s)
Fotorreceptores de Plantas/química , Acetatos/química , Animales , Chlamydomonas reinhardtii , Dicroismo Circular , Dimerización , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Químicos , Modelos Moleculares , Proteínas Mutantes Quiméricas/química , Técnicas de Placa-Clamp , Estabilidad Proteica , Teoría Cuántica , Células Sf9 , Análisis Espectral , Spodoptera , Transfección , Agua/química
6.
Analyst ; 138(12): 3470-7, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23653905

RESUMEN

The orientation of sensing molecules on solid phase biosensors has to be optimized to facilitate efficient binding of analytes. Since conventional observation methods (e.g., electron microscopy, atomic force microscopy, time-of-flight secondary ion mass spectrometry) require exaggerated machines and possess insufficient resolution for single molecule analyses, functional assays based on the reactivity to analytes have thus far been used for this optimization. However, it is not clear whether these assays can judge whether sensing molecules are fixed in an oriented-immobilization manner or not. Here, we describe that bio-nanocapsules of about 30 nm diameter, displaying approximately 120 molecules of a tandem form of the immunoglobulin (Ig) G Fc-binding Z domain (ZZ-BNCs), can discriminate between the Fc regions of IgGs fixed in an oriented-immobilization manner and those fixed randomly, thus facilitating the evaluation of the orientation of IgGs in immunosensors. Furthermore, in sandwich immunoassays, ZZ-BNCs can bind specifically to detection-IgGs fixed in an oriented-immobilization manner by antigen-capture IgG complexes, rather than to capture-IgGs fixed randomly onto a solid phase, allowing the simultaneous use of the same IgG as capture- and detection-IgGs. Thus, we demonstrate that ZZ-BNCs are a unique probe for evaluating the orientation of IgGs on a solid phase.


Asunto(s)
Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/metabolismo , Técnicas Biosensibles/métodos , Sondas Moleculares/metabolismo , Nanocápsulas/química , Anticuerpos Inmovilizados/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Sondas Moleculares/química , Estructura Terciaria de Proteína , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA