Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 13(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068978

RESUMEN

In order to deliver an aerosolized drug in a breath-triggered manner, the initiation of the patient's inspiration needs to be detected. The best-known systems monitoring breathing patterns are based on flow sensors. However, due to their large dead space volume, flow sensors are not advisable for monitoring the breathing of (preterm) neonates. Newly-developed respiratory sensors, especially when contact-based (invasive), can be tested on (preterm) neonates only with great effort due to clinical and ethical hurdles. Therefore, a physiological model is highly desirable to validate these sensors. For developing such a system, abdominal movement data of (preterm) neonates are required. We recorded time sequences of five preterm neonates' abdominal movements with a time-of-flight camera and successfully extracted various breathing patterns and respiratory parameters. Several characteristic breathing patterns, such as forced breathing, sighing, apnea and crying, were identified from the movement data. Respiratory parameters, such as duration of inspiration and expiration, as well as respiratory rate and breathing movement over time, were also extracted. This work demonstrated that respiratory parameters of preterm neonates can be determined without contact. Therefore, such a system can be used for breathing detection to provide a trigger signal for breath-triggered drug release systems. Furthermore, based on the recorded data, a physiological abdominal movement model of preterm neonates can now be developed.

2.
Microvasc Res ; 119: 84-90, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29738719

RESUMEN

Endothelin-1 (ET-1) is one of the key factors regulating tension of smooth muscles in blood vessels. It is believed that ET-1 plays an important role in pathogenesis of hypertension, and cardiovascular diseases; therefore, research in order to limit ET-1-mediated action is still in progress. The main objective of this paper was to evaluate the role of Rho-kinase in the ET-1-induced constriction of arteries. The analysis also included significance of intra- and extracellular pool of calcium ions in constriction triggered by ET-1. The studies were performed on perfused Wistar rat tail arteries. Concentration response curve (CRC) was determined for ET-1 in the presence of increased concentrations of Rho-kinase inhibitor (Y-27632) and IP3-receptor antagonist (2APB), both in reference to constriction triggered by solely ET-1. Afterwards, the influence of calcium ions present in the perfusion fluid was evaluated in terms of the effect triggered by 2APB and occurring in arteries constricted by ET-1. ET-1, in concentration dependent manner, leads to increase in perfusion pressure. Y-27632 and 2APB lead to shift of the concentration response curve for ET-1 to the right with simultaneously lowered maximum effect. There was no difference in reaction of the artery constricted by ET-1 and treated with 2APB in solution containing calcium and in calcium-free solution. Vasoconstrictive action of endothelin is not significantly dependent on the inflow of extracellular calcium, but it is proportional to inflow of Ca2+ related to activation of IP3 receptors and to Rho-kinase activity.


Asunto(s)
Arterias/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Endotelina-1/farmacología , Cola (estructura animal)/irrigación sanguínea , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Quinasas Asociadas a rho/metabolismo , Animales , Arterias/enzimología , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratas Wistar
3.
Biomed Rep ; 2(3): 412-418, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24748985

RESUMEN

The mitogenic and vasoconstrictive properties of the vascular system are attributed to endothelin-1 (ET-1). ET-1 serum concentration increases in a number of pathological conditions, particularly in those associated with blood vessel constriction. ET-1 is also associated with the underlying pathomechanisms of primary pulmonary hypertension, arterial hypertension and eclampsia. The aim of this study was to compare the vasodilating properties of selected phosphodiesterase (PDE) inhibitors and celecoxib in human mesenteric arteries constricted with ET-1, and investigate the role of the endothelium in relaxation. Perfused human mesenteric arteries were collected and stored under the same conditions as organs for transplantation. The mesenteric arteries (with and without the endothelium) were constricted by the addition of ET-1 and treated with one of the following: sildenafil (PDE5 inhibitor), zaprinast (PDE5 and 6 inhibitor), rolipram (PDE4 inhibitor) and celecoxib [cyclooxygenase-2 (COX-2) inhibitor]. Based on the observed changes of the perfusion pressure, concentration response curves (CRCs) were prepared for the respective inhibitors and the EC50 (concentration causing an effect equal to half of the maximum effect), pD2 (negative common logarithm of EC50) and relative potency (RP) were calculated. The results suggested that all the inhibitors triggered a concentration-dependent decrease in the perfusion pressure in isolated human superior mesenteric arteries with endothelium constricted by the addition of ET-1. In the arteries without endothelium, CRCs for celecoxib and rolipram were shifted to the right without a significant decrease in the maximum dilating effect. Moreover, CRCs for sildenafil and zaprinast were shifted to the right with a simultaneous significant decrease in the maximum dilating effect and with an increased inclination angle in reference to the concentration axis. In the presence of the endothelium, all of the evaluated PDE inhibitors, as well as celecoxib, reduced the reactivity of the mesenteric arteries caused by ET-1. Sildenafil indicated the lowest efficacy in the presence of the endothelium, but showed a higher potency compared to that of the other compounds. Removing the endothelium significantly reduced the vasodilating efficacy of PDE5 and 6 inhibitors and a statistically significant influence on the vasodilating efficacy of PDE4 inhibitor and celecoxib was observed. The high vasorelaxing efficacy of celecoxib at the background of the PDE inhibitors was observed, not only in the presence, but also in the absence of the endothelium and may be evidence for the relaxation induced by this COX-2 inhibitor in the cAMP- and cGMP-dependent pathways.

4.
Exp Ther Med ; 5(2): 616-620, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23407814

RESUMEN

Vascular smooth muscle tone changes under the influence of numerous contracting and relaxing factors. The purpose of the present study was to determine the modulating effect of ischemia and reperfusion (I/R) on contraction triggered by angiotensin II (ANG II) and Bay K8644 as well as to investigate the importance of nitric oxide (NO) and cGMP in these reactions. Experiments were performed on isolated and perfused Wistar rat tail arteries. The contraction triggered by ANG II and Bay K8644 with the use of intracellular (in calcium-free physiological salt solution; FPSS) and extracellular (in physiological salt solution; PSS) pools of calcium ions after I/R and in the presence of sodium nitroprusside (SNP), (8)Br-cGMP, an endothelial NO synthase (NOSe) inhibitor (L-NG-nitroarginine methyl ester; L-NAME) or ODQ [an inhibitor of soluble guanylyl cyclase (GC)] was evaluated. ANG II triggered contraction in FPSS and PSS, but Bay K8644 only in PSS. Ischemia reduced and reperfusion intensified the response of the artery to ANG II, but did not change the action of Bay K8644. SNP and (8)Br-cGMP reduced the response of the vessels to ANG II and did not change the modulating effect of ischemia, but reduced the intensifying action of reperfusion on contraction caused by the presence of ANG II. SNP lowered the action of Bay K8644 in PSS. In PSS, L-NAME and ODQ intensified the action of ANG II, eliminating the reducing effect of ischemia on the contraction caused by ANG II, but did not influence the intensifying reaction caused by reperfusion. L-NAME and ODQ did not influence the action of Bay K8644. I/R modulated the contraction of arteries triggered by ANG II, but did not influence the response to Bay K8644. The intra- and extracellular pools of calcium ions mediate the action of ANG II, but Bay K8644 stimulated contraction only with participation of calcium ions flowing into the cell. Control of the vascular smooth muscle tone associated with the action of NO and cGMP is subject to modulation under conditions of I/R.

5.
Exp Ther Med ; 4(2): 329-333, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22984369

RESUMEN

The aim of this study was to determine the role of acetylcholine and calcium ions in modulating the vascular contraction induced by angiotensin II (ANG II), phenylephrine (PHE) and caffeine. The study was performed on perfunded Wistar rat tail arteries. The contraction caused by ANG II, PHE and caffeine with the participation of intracellular [in free physiological salt solution (FPSS)] and extracellular [in physiological salt solution (PSS), after emptying the cellular stores] pools of calcium ions and the addition of L-NNA (NOSe inhibitor) or ODQ (GC inhibitor) was studied. Then the effect of acetylcholine on the contraction responses was analyzed. ANG II, PHE and caffeine induced an increase in perfusion pressure in PSS and FPSS. Acetylcholine reduced the contraction resulting from the presence of ANG II and PHE, but not caffeine. L-NNA and ODQ abolished the spasmolytic action of acetylcholine. Both pools of calcium ions mediated the action of ANG II and PHE, and caffeine induced the contraction with the participation of calcium released from intracellular stores. The spasmolytic effect of acetylcholine on responses stimulated by ANG II and PHE indicates the participation of nitric oxide in modulating the reactivity of the arteries on the studied agonists of the metabotropic receptors. No observed acetylcholine effect on caffeine suggests that the pathway associated with nitric oxide does not interfere with the contraction induced by the ryanodin receptor.

6.
Postepy Hig Med Dosw (Online) ; 64: 188-94, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20400782

RESUMEN

BACKGROUND: Calcium ions regulate the function of cells in many ways, acting as first messengers of intercellular information and second messengers of intracellular information. Changes in cytoplasmic calcium levels depend on calcium influx from the extracellular space or calcium release from cellular stores. Increase in calcium ion concentration takes place in pathological situations, such as ischemia. In the present study the roles of calcium and G protein in contraction induced by angiotensin II (agonist of the metabotropic receptor AT1), phenylephrine (agonist of alpha1-adrenergic metabotropic receptor), and Bay K8644 (a calcium channel agonist) after ischemia/reperfusion were investigated. MATERIAL/METHODS: Experiments were performed on perfused male Wistar rats' tail arteries. Contraction induced by angiotensin II, phenylephrine, and Bay K8644 mediated by intracellular or extracellular calcium after ischemia/reperfusion and in the presence of the blocker of G protein Bordetella pertussis toxin (P 7208) was analyzed. RESULTS: Ischemia reduced while reperfusion augmented the response of vascular smooth muscle cells to angiotensin II and phenylephrine, but they did not change the effects of Bay K8644. P 7208 decreased the effects of phenylephrine mediated by intracellular and extracellular calcium and reduced the reactions of angiotensin II mediated only by intracellular calcium, but did not change the effects of Bay K8644. CONCLUSIONS: Ischemia/reperfusion modulates vascular contraction induced by angiotensin II and phenylephrine. Both intracellular and extracellular calcium ions mediate the contraction induced by angiotensin II and phenylephrine. The results suggests that G protein modulates the effects of angiotensin II mediated by intracellular calcium ions while it plays a role in the reactions of phenylephrine mediated by calcium coming from both sources, intracellular and extracellular.


Asunto(s)
Calcio/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Angiotensina II/farmacología , Animales , Proteínas de Unión al GTP/efectos de los fármacos , Masculino , Fenilefrina/farmacología , Ratas , Ratas Wistar
7.
Postepy Hig Med Dosw (Online) ; 64: 195-200, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20400783

RESUMEN

BACKGROUND: Damage of transplanted organs during reperfusion is still a problem that prompts the search for new drugs able to diminish the risk of graft rejection. The aim of this study was to examine the influence of antioxidant system on the contraction of arteries induced by angiotensin II during ischemia/reperfusion and to determine the role of intracellular and extracellular calcium ions under these conditions. MATERIAL/METHODS: The experiments were performed on male Wistar rats' tail arteries. The effects of angiotensin II on vascular tone were examined after ischemia/reperfusion in the presence of catalase or aminotriazole. To determine the role of intracellular and extracellular Ca(2+), the experiments were performed in Ca(2+)-free PSS and PSS. RESULTS: Angiotensin II increased perfusion pressure in both Ca(2+)-free PSS and PSS. After ischemia, the reactions induced by angiotensin II were lower, while after reperfusion they were higher. In the presence of catalase the effects induced by angiotensin II were lower and in the presence of aminotriazole higher. CONCLUSIONS: Ischemia inhibits and reperfusion augments the perfusion pressure induced by angiotensin II. The results confirm the vasoprotective effect of catalase and the destructive influence of aminotriazole in modulating the reactions of vascular smooth muscle cells to ANG II after ischemia/reperfusion. These results suggest that the antioxidant system plays a role in modulating the reactions induced by angiotensin II after ischemia/reperfusion and that reperfusion disturbs the balance between antioxidants and the production of reactive oxygen species.


Asunto(s)
Calcio/farmacología , Contracción Muscular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Daño por Reperfusión/metabolismo , Animales , Antioxidantes/farmacología , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...