Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Clin Med ; 12(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37835061

RESUMEN

The risk assessment for carotid atherosclerotic lesions involves not only determining the degree of stenosis but also plaque morphology and its composition. Recently, carotid contrast-enhanced ultrasound (CEUS) has gained importance for evaluating vulnerable plaques. This review explores CEUS's utility in detecting carotid plaque surface irregularities and ulcerations as well as intraplaque neovascularization and its alignment with histology. Initial indications suggest that CEUS might have the potential to anticipate cerebrovascular incidents. Nevertheless, there is a need for extensive, multicenter prospective studies that explore the relationships between CEUS observations and patient clinical outcomes in cases of carotid atherosclerotic disease.

3.
J Clin Med ; 11(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012894

RESUMEN

Epilepsy is one of the most frequent serious brain disorders. Approximately 30,000 of the 150,000 children and adolescents who experience unprovoked seizures are diagnosed with epilepsy each year. Magnetic resonance imaging is the method of choice in diagnosing and monitoring patients with this condition. However, one very effective tool using MR images is volBrain software, which automatically generates information about the volume of brain structures. A total of 57 consecutive patients (study group) suffering from epilepsy and 34 healthy patients (control group) who underwent MR examination qualified for the study. Images were then evaluated by volBrain. Results showed atrophy of the brain and particular structures-GM, cerebrum, cerebellum, brainstem, putamen, thalamus, hippocampus and nucleus accumbens volume. Moreover, the statistically significant difference in the volume between the study and the control group was found for brain, lateral ventricle and putamen. A volumetric analysis of the CNS in children with epilepsy confirms a decrease in the volume of brain tissue. A volumetric assessment of brain structures based on MR data has the potential to be a useful diagnostic tool in children with epilepsy and can be implemented in clinical work; however, further studies are necessary to enhance the effectiveness of this software.

4.
Diagnostics (Basel) ; 12(7)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35885586

RESUMEN

Insulin resistance (IR) has become a common health issue in medical practice. There are no detailed data on IR prevalence, but it is an increasing problem due to its close association with obesity. However, IR is not considered as a separate nosological entity and the diagnostic criteria are not well defined, which leads to overdiagnosis of IR and an inappropriate approach. This review aims to summarize the available literature on IR pathophysiology, its relationship with obesity, as well as diagnostic methods, clinical presentation and treatment. Excessive energy intake results in cell overload that triggers mechanisms to protect cells from further energy accumulation by reducing insulin sensitivity. Additionally, hypertrophied adipocytes and macrophage infiltration causes local inflammation that may result in general inflammation that induces IR. The clinical picture varies from skin lesions (e.g., acanthosis nigricans) to metabolic disorders such as diabetes mellitus or metabolic-associated fatty liver disease. There are numerous IR laboratory markers with varying sensitivities and specificities. Nutrition changes and regular physical activity are crucial for IR management because a reduction in adipose tissue may reverse the inflammatory state and consequently reduce the severity of insulin resistance. In cases of obesity, anti-obesity medications can be used.

5.
J Clin Med ; 11(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743630

RESUMEN

Obesity remains a pandemic of the 21st century. While there are many causes of obesity and potential treatments that are currently known, source data indicate that the number of patients is constantly increasing. Neural mechanisms have become the subject of research and there has been an introduction of functional magnetic resonance imaging in obesity-associated altered neural signaling. Functional magnetic resonance imaging has been established as the gold standard in the assessment of neuronal functions related to nutrition. Thanks to this, it has become possible to delineate those regions of the brain that show altered activity in obese individuals. An integrative review of the literature was conducted using the keywords ""functional neuroimaging" OR "functional magnetic resonance "OR "fmri" and "obesity" and "reward circuit and obesity" in PubMed and Google Scholar databases from 2017 through May 2022. Results in English and using functional magnetic resonance imaging to evaluate brain response to diet and food images were identified. The results from functional magnetic resonance imaging may help to identify relationships between neuronal mechanisms and causes of obesity. Furthermore, they may provide a substrate for etiology-based treatment and provide new opportunities for the development of obesity pharmacotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA