Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(4)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35453539

RESUMEN

Fibrin is widely used in vascular tissue engineering. Typically, fibrin polymerization is initiated by adding exogenous thrombin. In this study, we proposed a protocol for the preparation of completely autologous fibrin without the use of endogenous thrombin and compared the properties of the prepared fibrin matrix with that obtained by the traditional method. Fibrinogen was obtained by ethanol precipitation followed by fibrin polymerization by adding either exogenous thrombin and calcium chloride (ExThr), or only calcium chloride (EnThr). We examined the structure, mechanical properties, thrombogenicity, degradation rate and cytocompatibility of fibrin matrices. Factor XIII (FXIII) quantitative assay was performed by ELISA, and FXIII activity was assessed by SDS-PAGE detection of γ-γ cross-links. The results show that network structure of EnThr fibrin was characterized by thinner fibers. The EnThr fibrin matrices had higher strength, stiffness and resistance to proteolytic degradation compared to ExThr fibrin. EnThr fibrin matrices exhibited less thrombogenicity in vitro than ExThr, and retained high cytocompatibility. Thus, the proposed approach has several advantages over the traditional method, namely the fabrication of a completely autologous coating material that has better mechanical properties, higher resistance to proteolysis and lower thrombogenicity.

2.
Nanomaterials (Basel) ; 12(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269222

RESUMEN

Nanocomposites based on poly(styrene-block-isobutylene-block-styrene) (SIBS) and single-walled carbon nanotubes (CNTs) were prepared and characterized in terms of tensile strength as well as bio- and hemocompatibility. It was shown that modification of CNTs using dodecylamine (DDA), featured by a long non-polar alkane chain, provided much better dispersion of nanotubes in SIBS as compared to unmodified CNTs. As a result of such modification, the tensile strength of the nanocomposite based on SIBS with low molecular weight (Mn = 40,000 g mol-1) containing 4% of functionalized CNTs was increased up to 5.51 ± 0.50 MPa in comparison with composites with unmodified CNTs (3.81 ± 0.11 MPa). However, the addition of CNTs had no significant effect on SIBS with high molecular weight (Mn~70,000 g mol-1) with ultimate tensile stress of pure polymer of 11.62 MPa and 14.45 MPa in case of its modification with 1 wt% of CNT-DDA. Enhanced biocompatibility of nanocomposites as compared to neat SIBS has been demonstrated in experiment with EA.hy 926 cells. However, the platelet aggregation observed at high CNT concentrations can cause thrombosis. Therefore, SIBS with higher molecular weight (Mn~70,000 g mol-1) reinforced by 1-2 wt% of CNTs is the most promising material for the development of cardiovascular implants such as heart valve prostheses.

3.
Arch Physiol Biochem ; 128(1): 261-269, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31595792

RESUMEN

To compare DPP4, LCN2, NAMPT, ITLN1, APLN mRNA levels in adipocytes isolated from the biopsies of subcutaneous, epicardial and perivascular fat obtained from 25 patients with coronary artery disease. Gene expression signature was determined by RT-qPCR with hydrolysis probes. We found DPP4 and APLN mRNA was higher expressed only in adipocytes isolated from epicardial adipose tissue compared to the subcutaneous fat. The ITLN1 gene was overexpressed in epicardial adipose tissue compared to both subcutaneous and perivascular tissues. APLN mRNA expression was positively correlated with total and LDL cholesterol plasma level, and DPP4 mRNA expression - with VLDL cholesterol concentration. Thus, adipocytes isolated from different adipose depots are characterised by differential gene expression of adipokines. Epicardial adipose tissue is of particular interest in the context of its function, molecular and genetic mechanisms of regulation of the cardiovascular system and as a therapeutic target for correction of adipose tissue-induced effects on health.


Asunto(s)
Adipoquinas , Enfermedad de la Arteria Coronaria , Adipocitos , Tejido Adiposo , Enfermedad de la Arteria Coronaria/genética , Expresión Génica , Humanos
4.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830334

RESUMEN

An association between high serum calcium/phosphate and cardiovascular events or death is well-established. However, a mechanistic explanation of this correlation is lacking. Here, we examined the role of calciprotein particles (CPPs), nanoscale bodies forming in the human blood upon its supersaturation with calcium and phosphate, in cardiovascular disease. The serum of patients with coronary artery disease or cerebrovascular disease displayed an increased propensity to form CPPs in combination with elevated ionised calcium as well as reduced albumin levels, altogether indicative of reduced Ca2+-binding capacity. Intravenous administration of CPPs to normolipidemic and normotensive Wistar rats provoked intimal hyperplasia and adventitial/perivascular inflammation in both balloon-injured and intact aortas in the absence of other cardiovascular risk factors. Upon the addition to primary human arterial endothelial cells, CPPs induced lysosome-dependent cell death, promoted the release of pro-inflammatory cytokines, stimulated leukocyte adhesion, and triggered endothelial-to-mesenchymal transition. We concluded that CPPs, which are formed in the blood as a result of altered mineral homeostasis, cause endothelial dysfunction and vascular inflammation, thereby contributing to the development of cardiovascular disease.


Asunto(s)
Angina de Pecho/fisiopatología , Isquemia Encefálica/fisiopatología , Cloruro de Calcio/sangre , Enfermedad de la Arteria Coronaria/fisiopatología , Células Endoteliales/patología , Infarto del Miocardio/fisiopatología , Fosfatos/sangre , Angina de Pecho/sangre , Angina de Pecho/genética , Animales , Aorta/metabolismo , Aorta/patología , Isquemia Encefálica/sangre , Isquemia Encefálica/genética , Cloruro de Calcio/química , Estudios de Casos y Controles , Muerte Celular , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/genética , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Floculación , Regulación de la Expresión Génica , Humanos , Inflamación , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/metabolismo , Leucocitos/patología , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Fosfatos/química , Cultivo Primario de Células , Ratas , Ratas Wistar , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Polymers (Basel) ; 13(16)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34451177

RESUMEN

Tissue-engineered vascular graft for the reconstruction of small arteries is still an unmet clinical need, despite the fact that a number of promising prototypes have entered preclinical development. Here we test Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)Poly(ε-caprolactone) 4-mm-diameter vascular grafts equipped with vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and stromal cell-derived factor 1α (SDF-1α) and surface coated with heparin and iloprost (PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo, n = 8) in a sheep carotid artery interposition model, using biostable vascular prostheses of expanded poly(tetrafluoroethylene) (ePTFE, n = 5) as a control. Primary patency of PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts was 62.5% (5/8) at 24 h postimplantation and 50% (4/8) at 18 months postimplantation, while all (5/5) ePTFE conduits were occluded within the 24 h after the surgery. At 18 months postimplantation, PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts were completely resorbed and replaced by the vascular tissue. Regenerated arteries displayed a hierarchical three-layer structure similar to the native blood vessels, being fully endothelialised, highly vascularised and populated by vascular smooth muscle cells and macrophages. The most (4/5, 80%) of the regenerated arteries were free of calcifications but suffered from the aneurysmatic dilation. Therefore, biodegradable PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts showed better short- and long-term results than bio-stable ePTFE analogues, although these scaffolds must be reinforced for the efficient prevention of aneurysms.

6.
Polymers (Basel) ; 12(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971801

RESUMEN

In this study, we incorporated carbon nanotubes (CNTs) into poly(styrene-block-isobutylene-block-styrene) (SIBS) to investigate the physical characteristics of the resulting nanocomposite and its cytotoxicity to endothelial cells. CNTs were dispersed in chloroform using sonication following the addition of a SIBS solution at different ratios. The resultant nanocomposite films were analyzed by X-ray microtomography, optical and scanning electron microscopy; tensile strength was examined by uniaxial tension testing; hydrophobicity was evaluated using a sessile drop technique; for cytotoxicity analysis, human umbilical vein endothelial cells were cultured on SIBS-CNTs for 3 days. We observed an uneven distribution of CNTs in the polymer matrix with sporadic bundles of interwoven nanotubes. Increasing the CNT content from 0 wt% to 8 wt% led to an increase in the tensile strength of SIBS films from 4.69 to 16.48 MPa. The engineering normal strain significantly decreased in 1 wt% SIBS-CNT films in comparison with the unmodified samples, whereas a further increase in the CNT content did not significantly affect this parameter. The incorporation of CNT into the SIBS matrix resulted in increased hydrophilicity, whereas no cytotoxicity towards endothelial cells was noted. We suggest that SIBS-CNT may become a promising material for the manufacture of implantable devices, such as cardiovascular patches or cusps of the polymer heart valve.

7.
ACS Omega ; 5(34): 21700-21711, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32905385

RESUMEN

Modification by Arg-Gly-Asp (RGD) peptides is a promising approach to improve the biocompatibility of biodegradable vascular patches for arteriotomy. In this study, we evaluated the performance of vascular patches electrospun using a blend of polycaprolactone (PCL) and polyhydroxybutyrate/valerate (PHBV) and additionally modified with RGDK, AhRGD, and c[RGDFK] peptides using 1,6-hexamethylenediamine or 4,7,10-trioxa-1,13-tridecanediamine (TTDDA) linkers. We examined mechanical properties and hemocompatibility of resulting patches before implanting them in rat abdominal aortas to assess their performance in vivo. Patches were explanted 1, 3, 6, and 12 months postoperation followed by histological and immunofluorescence analyses. Patches manufactured from the human internal mammary artery or commercially available KemPeriplas-Neo xenopericardial patches were used as a control. The tensile strength and F max of KemPeriplas-Neo patches were 4- and 16.7-times higher than those made of human internal mammary artery, respectively. Both RGD-modified and unmodified PHBV/PCL patches demonstrated properties similar to a human internal mammary artery patch. Regardless of RGD modification, experimental PHBV/PCL patches displayed fewer lysed red blood cells and resulted in milder platelet aggregation than KemPeriplas-Neo patches. Xenopericardial patches failed to form an endothelial layer in vivo and were prone to calcification. By contrast, TTDDA/RGDK-modified biodegradable patches demonstrated a resistance to calcification. Modification by TTDDA/RGDK and TTDDA/c[RGDFK] facilitated the formation of neovasculature upon the implantation in vivo.

8.
Cells ; 9(4)2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260159

RESUMEN

Endothelial colony-forming cells (ECFC) are currently considered as a promising cell population for the pre-endothelialization or pre-vascularization of tissue-engineered constructs, including small-diameter biodegradable vascular grafts. However, the extent of heterogeneity between ECFC and mature vascular endothelial cells (EC) is unclear. Here, we performed a transcriptome-wide study to compare gene expression profiles of ECFC, human coronary artery endothelial cells (HCAEC), and human umbilical vein endothelial cells (HUVEC). Characterization of the abovementioned cell populations was carried out by immunophenotyping, tube formation assay, and evaluation of proliferation capability while global gene expression profiling was conducted by means of RNA-seq. ECFC were similar to HUVEC in terms of immunophenotype (CD31+vWF+KDR+CD146+CD34-CD133-CD45-CD90-) and tube formation activity yet had expectedly higher proliferative potential. HCAEC and HUVEC were generally similar to ECFC with regards to their global gene expression profile; nevertheless, ECFC overexpressed specific markers of all endothelial lineages (NRP2, NOTCH4, LYVE1), in particular lymphatic EC (LYVE1), and had upregulated extracellular matrix and basement membrane genes (COL1A1, COL1A2, COL4A1, COL4A2). Proteomic profiling for endothelial lineage markers and angiogenic molecules generally confirmed RNA-seq results, indicating ECFC as an intermediate population between HCAEC and HUVEC. Therefore, gene expression profile and behavior of ECFC suggest their potential to be applied for a pre-endothelialization of bioartificial vascular grafts, whereas in terms of endothelial hierarchy they differ from HCAEC and HUVEC, having a transitional phenotype.


Asunto(s)
Células Endoteliales/citología , Leucocitos Mononucleares/citología , Células Madre/citología , Transcriptoma/genética , Acetilación , Diferenciación Celular , Línea Celular , Vasos Coronarios/citología , Fluorescencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Análisis de Componente Principal , Proteómica , Células del Estroma/citología , Grasa Subcutánea/citología
9.
Polymers (Basel) ; 11(1)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30960158

RESUMEN

Modification with Arg-Gly-Asp (RGD) peptides is a promising approach to improve biocompatibility of small-calibre vascular grafts but it is unknown how different RGD sequence composition impacts graft performance. Here we manufactured 1.5 mm poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) grafts modified by distinct linear or cyclic RGD peptides immobilized by short or long amine linker arms. Modified vascular prostheses were tested in vitro to assess their mechanical properties, hemocompatibility, thrombogenicity and endothelialisation. We also implanted these grafts into rat abdominal aortas with the following histological examination at 1 and 3 months to evaluate their primary patency, cellular composition and detect possible calcification. Our results demonstrated that all modes of RGD modification reduce ultimate tensile strength of the grafts. Modification of prostheses does not cause haemolysis upon the contact with modified grafts, yet all the RGD-treated grafts display a tendency to promote platelet aggregation in comparison with unmodified counterparts. In vivo findings identify that cyclic Arg-Gly-Asp-Phe-Lys peptide in combination with trioxa-1,13-tridecanediamine linker group substantially improve graft biocompatibility. To conclude, here we for the first time compared synthetic small-diameter vascular prostheses with different modes of RGD modification. We suggest our graft modification regimen as enhancing graft performance and thus recommend it for future use in tissue engineering.

10.
Anal Biochem ; 543: 128-131, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29247607

RESUMEN

Adipose tissue is of interest in the context of its role in the pathogenesis of cardiovascular diseases. Modern experimental techniques require a well-purified RNA, but all the routine protocols for RNA extraction have a number of limitations in case of fatty tissues. Here we described a modified protocol for RNA extraction from human adipocytes based on routine column method. Suggested modifications optimized the sample preparation, lysis and washing lead to enhance RNA purity. We conclude that the current protocol for total RNA purification from adipocytes allows extracting a high-quality RNA devoid of fatty acids, organic solvents and salts contamination.


Asunto(s)
Adipocitos/química , ARN/aislamiento & purificación , ARN/normas , Humanos , ARN/química , Programas Informáticos , Espectrofotometría
11.
Int J Mol Sci ; 17(11)2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27854352

RESUMEN

The blend of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) has recently been considered promising for vascular tissue engineering. However, it was shown that PHBV/PCL grafts require biofunctionalization to achieve high primary patency rate. Here we compared immobilization of arginine-glycine-aspartic acid (RGD)-containing peptides and the incorporation of vascular endothelial growth factor (VEGF) as two widely established biofunctionalization approaches. Electrospun PHBV/PCL small-diameter grafts with either RGD peptides or VEGF, as well as unmodified grafts were implanted into rat abdominal aortas for 1, 3, 6, and 12 months following histological and immunofluorescence assessment. We detected CD31⁺/CD34⁺/vWF⁺ cells 1 and 3 months postimplantation at the luminal surface of PHBV/PCL/RGD and PHBV/PCL/VEGF, but not in unmodified grafts, with the further observation of CD31⁺CD34-vWF⁺ phenotype. These cells were considered as endothelial and produced a collagen-positive layer resembling a basement membrane. Detection of CD31⁺/CD34⁺ cells at the early stages with subsequent loss of CD34 indicated cell adhesion from the bloodstream. Therefore, either conjugation with RGD peptides or the incorporation of VEGF promoted the formation of a functional endothelial cell layer. Furthermore, both modifications increased primary patency rate three-fold. In conclusion, both of these biofunctionalization approaches can be considered as equally efficient for the modification of tissue-engineered vascular grafts.


Asunto(s)
Prótesis Vascular , Materiales Biocompatibles Revestidos/química , Proteínas Inmovilizadas/química , Oligopéptidos/química , Factor A de Crecimiento Endotelial Vascular/química , Animales , Antígenos CD34/análisis , Implantación de Prótesis Vascular , Adhesión Celular , Células Endoteliales/citología , Masculino , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Ratas Wistar , Ingeniería de Tejidos
12.
Front Pharmacol ; 7: 230, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27524968

RESUMEN

The combination of a natural polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a synthetic hydrophobic polymer poly(ε-caprolactone) (PCL) is promising for the preparation of biodegradable and biocompatible small-diameter vascular grafts for bypass surgery. However, physico-mechanical properties and endothelialization rate of PHBV/PCL grafts are poor. We suggested that incorporation of vascular endothelial growth factor (VEGF) into PHBV/PCL grafts may improve their physico-mechanical properties and enhance endothelialization. Here we compared morphology, physico-mechanical properties, and in vivo performance of electrospun small-diameter vascular grafts prepared from PHBV/PCL with and without VEGF. Structure of the graft surface and physico-mechanical properties were examined by scanning electron microscopy and universal testing machine, respectively. Grafts were implanted into rat abdominal aorta for 1, 3, and 6 months with the further histological, immunohistochemical, and immunofluorescence examination. PHBV/PCL grafts with and without VEGF were highly porous and consisted mostly of nanoscale and microscale fibers, respectively. Mean pore diameter and mean pore area were significantly lower in PHBV/PCL/VEGF compared to PHBV/PCL grafts (1.47 µm and 10.05 µm(2); 2.63 µm and 47.13 µm(2), respectively). Durability, elasticity, and stiffness of PHBV/PCL grafts with VEGF were more similar to internal mammary artery compared to those without, particularly 6 months postimplantation. Both qualitative examination and quantitative image analysis showed that three-fourths of PHBV/PCL grafts with VEGF were patent and had many CD31-, CD34-, and vWF-positive cells at their inner surface. However, all PHBV/PCL grafts without VEGF were occluded and had no or a few CD31-positive cells at the inner surface. Therefore, VEGF enhanced endothelialization and improved graft patency at all the time points in a rat abdominal aorta replacement model. In conclusion, PHBV/PCL grafts with VEGF have better biocompatibility and physico-mechanical properties compared to those without. Incorporation of VEGF improves graft patency and accelerates formation of endothelial cell monolayer.

13.
Front Pharmacol ; 7: 136, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27252652

RESUMEN

Small diameter arterial bypass grafts are considered as unmet clinical need since the current grafts have poor patency of 25% within 5 years. We have developed a 3D scaffold manufactured from natural and synthetic biodegradable polymers, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(𝜀-caprolactone) (PCL), respectively. Further to improve the biophysical properties as well as endothelialisation, the grafts were covalently conjugated with arginine-glycine-aspartic acid (RGD) bioactive peptides. The biophysical properties as well as endothelialisation of PHBV/PCL and PCL 2 mm diameter bypass grafts were assessed with and without biofunctionalisation with RGD peptides in vitro and in vivo. Morphology of the grafts was assessed by scanning electron microscopy, whereas physico-mechanical properties were evaluated using a physiological circulating system equipped with a state of art ultrasound vascular wall tracking system. Endothelialisation of the grafts in vitro and in vivo were assessed using a cell viability assay and rat abdominal aorta replacement model, respectively. The biofunctionalisation with RGD bioactive peptides decreased mean fiber diameter and mean pore area in PHBV/PCL grafts; however, this was not the case for PCL grafts. Both PHBV/PCL and PCL grafts with RGD peptides had lower durability compared to those without; these durability values were similar to those of internal mammary artery. Modification of PHBV/PCL and PCL grafts with RGD peptides increased endothelial cell viability in vitro by a factor of eight and enhanced the formation of an endothelial cell monolayer in vivo 1 month postimplantation. In conclusion, PHBV/PCL small-caliber graft can be a suitable 3D scaffold for the development of a tissue engineering arterial bypass graft.

14.
Sci Rep ; 6: 27255, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251104

RESUMEN

Calcium phosphate bions (CPB) are biomimetic mineralo-organic nanoparticles which represent a physiological mechanism regulating the function, transport and disposal of calcium and phosphorus in the human body. We hypothesised that CPB may be pathogenic entities and even a cause of cardiovascular calcification. Here we revealed that CPB isolated from calcified atherosclerotic plaques and artificially synthesised CPB are morphologically and chemically indistinguishable entities. Their formation is accelerated along with the increase in calcium salts-phosphates/serum concentration ratio. Experiments in vitro and in vivo showed that pathogenic effects of CPB are defined by apoptosis-mediated endothelial toxicity but not by direct tissue calcification or functional changes in anti-calcification proteins. Since the factors underlying the formation of CPB and their pathogenic mechanism closely resemble those responsible for atherosclerosis development, further research in this direction may help us to uncover triggers of this disease.


Asunto(s)
Materiales Biomiméticos/farmacología , Fosfatos de Calcio/toxicidad , Células Endoteliales/citología , Placa Aterosclerótica/química , Apoptosis , Calcificación Fisiológica/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Humanos , Fosfatos/metabolismo , Sales (Química)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...