Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
2.
Neurogastroenterol Motil ; 36(4): e14771, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396340

RESUMEN

BACKGROUND: In preclinical studies whole gut transit (WGT) in mice is a gold-standard "leading-edge" approach that measures the time between orogastric gavage of carmine red and defecation of the first carmine red pellet. Transit studies in humans are performed during the active day because GI motility and transit are suppressed during the night. Since mice are nocturnal, WGT studies traditionally done during the day occur during their rest phase. How circadian rhythm affects WGT in mice is not known. METHODS: We used an automated approach for high temporal resolution uninterrupted testing of mouse WGT and activity. We housed wild-type Bl6/C57 mice under the standard 12 h light-dark cycles. At 8 weeks, we performed carmine red orogastric gavage and assessed WGT during Light (rest) conditions. Then, we exposed mice to a reverse 12 h light-dark cycle for 2 weeks and tested them in the Dark (active) under red light conditions. Timelapse videos were analyzed to quantify activity and to timestamp all pellets, and multiple parameters were analyzed. KEY RESULT: When complementary light cycle reversal experiments were performed, we found a significant increase in mouse activity when mice were tested during their Dark (active) phase, compared to their Light (rest) phase. In mice tested in the Active phase compared to the Rest phase, we found a significant acceleration in WGT, increased rate and total number of pellets produced, and more pellet clustering. These data show that the mice tested in the Active phase have important differences in activity that correlate with multiple alterations in gastrointestinal transit. CONCLUSION & INFERENCES: During the Active phase mice have faster WGT, produce more pellets, and cluster their output compared to testing in the Rest phase. Like in humans, circadian rhythm is an important consideration for transit studies in mice, and a simple reverse light cycle approach facilitates further studies on the role of circadian rhythm in GI motility.


Asunto(s)
Carmín , Ritmo Circadiano , Humanos , Ratones , Animales , Fotoperiodo , Tránsito Gastrointestinal , Descanso
3.
Biosens Bioelectron ; 248: 115896, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176252

RESUMEN

A common challenge in microfluidic cell cultures has to do with analysis of cell function without replacing a significant fraction of the culture volume and disturbing local concentration gradients of signals. To address this challenge, we developed a microfluidic cell culture device with an integrated bioanalysis unit to enable on-chip analysis of picoliter volumes of cell-conditioned media. The culture module consisted of an array of 140 microwells with a diameter of 300 m which were made low-binding to promote organization of cells into 3D spheroids. The bioanalysis module contained a droplet generator unit, 15 micromechanical valves and reservoirs loaded with reagents. Each 0.8 nL droplet contained an aliquot of conditioned media mixed with assay reagents. The use of microvalves allowed us to load enzymatic assay and immunoassay into sequentially generated droplets for detection of glucose and albumin, respectively. As a biological application of the microfluidic device, we evaluated hormonal stimulation and glucose consumption of hepatic spheroids. To mimic physiological processes occurring during feeding and fasting, hepatic spheroids were exposed to pancreatic hormones, insulin or glucagon. The droplet-based bioanalysis module was used to measure uptake or release of glucose upon hormonal stimulation. In the future, we intend to use this microfluidic device to mimic and measure pathophysiological processes associated with hepatic insulin resistance and diabetes in the context of metabolic syndrome.


Asunto(s)
Técnicas Biosensibles , Técnicas Analíticas Microfluídicas , Microfluídica , Medios de Cultivo Condicionados , Glucosa/análisis
4.
Aging (Albany NY) ; 15(19): 9984-10009, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819791

RESUMEN

Cellular senescence and circadian dysregulation are biological hallmarks of aging. Whether they are coordinately regulated has not been thoroughly studied. We hypothesize that BMAL1, a pioneer transcription factor and master regulator of the molecular circadian clock, plays a role in the senescence program. Here, we demonstrate BMAL1 is significantly upregulated in senescent cells and has altered rhythmicity compared to non-senescent cells. Through BMAL1-ChIP-seq, we show that BMAL1 is uniquely localized to genomic motifs associated with AP-1 in senescent cells. Integration of BMAL1-ChIP-seq data with RNA-seq data revealed that BMAL1 presence at AP-1 motifs is associated with active transcription. Finally, we showed that BMAL1 contributes to AP-1 transcriptional control of key features of the senescence program, including altered regulation of cell survival pathways, and confers resistance to drug-induced apoptosis. Overall, these results highlight a previously unappreciated role of the core circadian clock component BMAL1 on the molecular phenotype of senescent cells.


Asunto(s)
Factores de Transcripción ARNTL , Relojes Circadianos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Factor de Transcripción AP-1/genética , Regulación de la Expresión Génica , Relojes Circadianos/genética , Senescencia Celular/genética , Ritmo Circadiano
6.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37751301

RESUMEN

BACKGROUNDProglucagon can be processed to glucagon-like peptide1 (GLP-1) within the islet, but its contribution to islet function in humans remains unknown. We sought to understand whether pancreatic GLP-1 alters islet function in humans and whether this is affected by type 2 diabetes.METHODSWe therefore studied individuals with and without type 2 diabetes on two occasions in random order. On one occasion, exendin 9-39, a competitive antagonist of the GLP-1 Receptor (GLP1R), was infused, while on the other, saline was infused. The tracer dilution technique ([3-3H] glucose) was used to measure glucose turnover during fasting and during a hyperglycemic clamp.RESULTSExendin 9-39 increased fasting glucose concentrations; fasting islet hormone concentrations were unchanged, but inappropriate for the higher fasting glucose observed. In people with type 2 diabetes, fasting glucagon concentrations were markedly elevated and persisted despite hyperglycemia. This impaired suppression of endogenous glucose production by hyperglycemia.CONCLUSIONThese data show that GLP1R blockade impairs islet function, implying that intra-islet GLP1R activation alters islet responses to glucose and does so to a greater degree in people with type 2 diabetes.TRIAL REGISTRATIONThis study was registered at ClinicalTrials.gov NCT04466618.FUNDINGThe study was primarily funded by NIH NIDDK DK126206. AV is supported by DK78646, DK116231 and DK126206. CDM was supported by MIUR (Italian Minister for Education) under the initiative "Departments of Excellence" (Law 232/2016).


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Glucosa/metabolismo , Hiperglucemia/metabolismo , Insulina/metabolismo
7.
Physiol Rep ; 10(13): e15380, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35822422

RESUMEN

Abnormal postprandial suppression of glucagon in Type 2 diabetes (T2DM) has been attributed to impaired insulin secretion. Prior work suggests that insulin and glucagon show an inverse coordinated relationship. However, dysregulation of α-cell function in prediabetes occurs early and independently of changes in ß-cells, which suggests insulin having a less significant role on glucagon control. We therefore, sought to examine whether hepatic vein hormone concentrations provide evidence to further support the modulation of glucagon secretion by insulin. As part of a series of experiments to measure the effect of diabetes-associated genetic variation in TCF7L2 on islet cell function, hepatic vein insulin and glucagon concentrations were measured at 2-minute intervals during fasting and a hyperglycemic clamp. The experiment was performed on 29 nondiabetic subjects (age = 46 ± 2 years, BMI 28 ± 1 Kg/m2 ) and enabled post-hoc analysis, using Cross-Correlation and Cross-Approximate Entropy (Cross-ApEn) to evaluate the interaction of insulin and glucose. Mean insulin concentrations rose from fasting (33 ± 4 vs. 146 ± 12 pmol/L, p < 0.01) while glucagon was suppressed (96 ± 8 vs. 62 ± 5 ng/L, p < 0.01) during the clamp. Cross-ApEn was used to measure pattern reproducibility in the two hormones using glucagon as control mechanism (0.78 ± 0.03 vs. 0.76 ± 0.03, fasting vs. hyperglycemia) and using insulin as a control mechanism (0.78 ± 0.02 vs. 0.76 ± 0.03, fasting vs. hyperglycemia). Values did not differ between the two scenarios. Cross-correlation analysis demonstrated a small in-phase coordination between insulin and glucagon concentrations during fasting, which inverted during hyperglycemia. This data suggests that the interaction between the two hormones is not driven by either. On a minute-to-minute basis, direct control and secretion of glucagon is not mediated (or restrained) by insulin.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Adulto , Glucemia , Glucagón , Humanos , Insulina , Persona de Mediana Edad , Reproducibilidad de los Resultados
8.
Cell Death Dis ; 13(4): 353, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428762

RESUMEN

Pancreatic ß-cell failure in type 2 diabetes mellitus (T2DM) is associated with impaired regulation of autophagy which controls ß-cell development, function, and survival through clearance of misfolded proteins and damaged organelles. However, the mechanisms responsible for defective autophagy in T2DM ß-cells remain unknown. Since recent studies identified circadian clock transcriptional repressor REV-ERBα as a novel regulator of autophagy in cancer, in this study we set out to test whether REV-ERBα-mediated inhibition of autophagy contributes to the ß-cell failure in T2DM. Our study provides evidence that common diabetogenic stressors (e.g., glucotoxicity and cytokine-mediated inflammation) augment ß-cell REV-ERBα expression and impair ß-cell autophagy and survival. Notably, pharmacological activation of REV-ERBα was shown to phenocopy effects of diabetogenic stressors on the ß-cell through inhibition of autophagic flux, survival, and insulin secretion. In contrast, negative modulation of REV-ERBα was shown to provide partial protection from inflammation and glucotoxicity-induced ß-cell failure. Finally, using bioinformatic approaches, we provide further supporting evidence for augmented REV-ERBα activity in T2DM human islets associated with impaired transcriptional regulation of autophagy and protein degradation pathways. In conclusion, our study reveals a previously unexplored causative relationship between REV-ERBα expression, inhibition of autophagy, and ß-cell failure in T2DM.


Asunto(s)
Relojes Circadianos , Diabetes Mellitus Tipo 2 , Autofagia/genética , Ritmo Circadiano/fisiología , Diabetes Mellitus Tipo 2/genética , Humanos , Inflamación , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo
9.
Front Endocrinol (Lausanne) ; 13: 842603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355560

RESUMEN

Our ever-changing modern environment is a significant contributor to the increased prevalence of many chronic diseases, and particularly, type 2 diabetes mellitus (T2DM). Although the modern era has ushered in numerous changes to our daily living conditions, changes in "what" and "when" we eat appear to disproportionately fuel the rise of T2DM. The pancreatic islet is a key biological controller of an organism's glucose homeostasis and thus plays an outsized role to coordinate the response to environmental factors to preserve euglycemia through a delicate balance of endocrine outputs. Both successful and failed adaptation to dynamic environmental stimuli has been postulated to occur due to changes in the transcriptional and epigenetic regulation of pathways associated with islet secretory function and survival. Therefore, in this review we examined and evaluated the current evidence elucidating the key epigenetic mechanisms and transcriptional programs underlying the islet's coordinated response to the interaction between the timing and the composition of dietary nutrients common to modern lifestyles. With the explosion of next generation sequencing, along with the development of novel informatic and -omic approaches, future work will continue to unravel the environmental-epigenetic relationship in islet biology with the goal of identifying transcriptional and epigenetic targets associated with islet perturbations in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Diabetes Mellitus Tipo 2/complicaciones , Dieta , Epigénesis Genética , Homeostasis , Humanos , Islotes Pancreáticos/metabolismo
10.
Sci Adv ; 8(12): eabj9949, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35319981

RESUMEN

Currently, there is no pharmacological treatment targeting defective tissue repair in chronic disease. Here, we used a transcriptomics-guided drug target discovery strategy using gene signatures of smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke, identifying druggable targets expressed in alveolar epithelial progenitors, of which we screened the function in lung organoids. We found several drug targets with regenerative potential, of which EP and IP prostanoid receptor ligands had the most profound therapeutic potential in restoring cigarette smoke-induced defects in alveolar epithelial progenitors in vitro and in vivo. Mechanistically, we found, using single-cell RNA sequencing analysis, that circadian clock and cell cycle/apoptosis signaling pathways were differentially expressed in alveolar epithelial progenitor cells in patients with COPD and in a relevant model of COPD, which was prevented by prostaglandin E2 or prostacyclin mimetics. We conclude that specific targeting of EP and IP receptors offers therapeutic potential for injury to repair in COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Transcriptoma , Animales , Humanos , Ligandos , Pulmón/metabolismo , Ratones , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Regeneración
11.
Gastroenterology ; 162(2): 535-547.e13, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34688712

RESUMEN

BACKGROUND AND AIMS: The gastrointestinal (GI) tract extracts nutrients from ingested meals while protecting the organism from infectious agents frequently present in meals. Consequently, most animals conduct the entire digestive process within the GI tract while keeping the luminal contents entirely outside the body, separated by the tightly sealed GI epithelium. Therefore, like the skin and oral cavity, the GI tract must sense the chemical and physical properties of the its external interface to optimize its function. Specialized sensory enteroendocrine cells (EECs) in GI epithelium interact intimately with luminal contents. A subpopulation of EECs express the mechanically gated ion channel Piezo2 and are developmentally and functionally like the skin's touch sensor- the Merkel cell. We hypothesized that Piezo2+ EECs endow the gut with intrinsic tactile sensitivity. METHODS: We generated transgenic mouse models with optogenetic activators in EECs and Piezo2 conditional knockouts. We used a range of reference standard and novel techniques from single cells to living animals, including single-cell RNA sequencing and opto-electrophysiology, opto-organ baths with luminal shear forces, and in vivo studies that assayed GI transit while manipulating the physical properties of luminal contents. RESULTS: Piezo2+ EECs have transcriptomic features of synaptically connected, mechanosensory epithelial cells. EEC activation by optogenetics and forces led to Piezo2-dependent alterations in colonic propagating contractions driven by intrinsic circuitry, with Piezo2+ EECs detecting the small luminal forces and physical properties of the luminal contents to regulate transit times in the small and large bowel. CONCLUSIONS: The GI tract has intrinsic tactile sensitivity that depends on Piezo2+ EECs and allows it to detect luminal forces and physical properties of luminal contents to modulate physiology.


Asunto(s)
Células Enteroendocrinas/metabolismo , Mucosa Intestinal/metabolismo , Canales Iónicos/genética , Tacto/fisiología , Animales , Células Enteroendocrinas/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Técnicas de Inactivación de Genes , Mucosa Intestinal/citología , Mucosa Intestinal/fisiología , Canales Iónicos/metabolismo , Mecanorreceptores , Ratones , Ratones Transgénicos , Optogenética , Peristaltismo/fisiología
12.
Sci Adv ; 7(51): eabg6856, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34910509

RESUMEN

Circadian rhythm disruption (CD) is associated with impaired glucose homeostasis and type 2 diabetes mellitus (T2DM). While the link between CD and T2DM remains unclear, there is accumulating evidence that disruption of fasting/feeding cycles mediates metabolic dysfunction. Here, we used an approach encompassing analysis of behavioral, physiological, transcriptomic, and epigenomic effects of CD and consequences of restoring fasting/feeding cycles through time-restricted feeding (tRF) in mice. Results show that CD perturbs glucose homeostasis through disruption of pancreatic ß cell function and loss of circadian transcriptional and epigenetic identity. In contrast, restoration of fasting/feeding cycle prevented CD-mediated dysfunction by reestablishing circadian regulation of glucose tolerance, ß cell function, transcriptional profile, and reestablishment of proline and acidic amino acid­rich basic leucine zipper (PAR bZIP) transcription factor DBP expression/activity. This study provides mechanistic insights into circadian regulation of ß cell function and corresponding beneficial effects of tRF in prevention of T2DM.

13.
J Clin Invest ; 131(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623331

RESUMEN

Pancreatic ß cell failure in type 2 diabetes mellitus (T2DM) is attributed to perturbations of the ß cell's transcriptional landscape resulting in impaired glucose-stimulated insulin secretion. Recent studies identified SLC4A4 (a gene encoding an electrogenic Na+-coupled HCO3- cotransporter and intracellular pH regulator, NBCe1) as one of the misexpressed genes in ß cells of patients with T2DM. Thus, in the current study, we set out to test the hypothesis that misexpression of SLC4A4/NBCe1 in T2DM ß cells contributes to ß cell dysfunction and impaired glucose homeostasis. To address this hypothesis, we first confirmed induction of SLC4A4/NBCe1 expression in ß cells of patients with T2DM and demonstrated that its expression was associated with loss of ß cell transcriptional identity, intracellular alkalinization, and ß cell dysfunction. In addition, we generated a ß cell-selective Slc4a4/NBCe1-KO mouse model and found that these mice were protected from diet-induced metabolic stress and ß cell dysfunction. Importantly, improved glucose tolerance and enhanced ß cell function in Slc4a4/NBCe1-deficient mice were due to augmented mitochondrial function and increased expression of genes regulating ß cell identity and function. These results suggest that increased ß cell expression of SLC4A4/NBCe1 in T2DM plays a contributory role in promotion of ß cell failure and should be considered as a potential therapeutic target.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Expresión Génica , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/prevención & control , Humanos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Obesidad/genética , Obesidad/metabolismo , Simportadores de Sodio-Bicarbonato/deficiencia , Simportadores de Sodio-Bicarbonato/genética , Estrés Fisiológico
14.
Cell Rep ; 36(8): 109613, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433033

RESUMEN

Coordinated communication among pancreatic islet cells is necessary for maintenance of glucose homeostasis. In diabetes, chronic exposure to pro-inflammatory cytokines has been shown to perturb ß cell communication and function. Compelling evidence has implicated extracellular vesicles (EVs) in modulating physiological and pathological responses to ß cell stress. We report that pro-inflammatory ß cell small EVs (cytokine-exposed EVs [cytoEVs]) induce ß cell dysfunction, promote a pro-inflammatory islet transcriptome, and enhance recruitment of CD8+ T cells and macrophages. Proteomic analysis of cytoEVs shows enrichment of the chemokine CXCL10, with surface topological analysis depicting CXCL10 as membrane bound on cytoEVs to facilitate direct binding to CXCR3 receptors on the surface of ß cells. CXCR3 receptor inhibition reduced CXCL10-cytoEV binding and attenuated ß cell dysfunction, inflammatory gene expression, and leukocyte recruitment to islets. This work implies a significant role of pro-inflammatory ß cell-derived small EVs in modulating ß cell function, global gene expression, and antigen presentation through activation of the CXCL10/CXCR3 axis.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Quimiocina CXCL10/metabolismo , Vesículas Extracelulares/metabolismo , Receptores CXCR3/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Diabetes Mellitus/patología , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL
15.
Metabolites ; 11(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206296

RESUMEN

Pancreatic ß-cells are responsible for the synthesis and exocytosis of insulin in response to an increase in circulating glucose. Insulin secretion occurs in a pulsatile manner, with oscillatory pulses superimposed on a basal secretion rate. Insulin pulses are a marker of ß-cell health, and secretory parameters, such as pulse amplitude, time interval and frequency distribution, are impaired in obesity, aging and type 2 diabetes. In this review, we detail the mechanisms of insulin production and ß-cell synchronization that regulate pulsatile insulin secretion, and we discuss the challenges to consider when measuring fast oscillatory secretion in vivo. These include the anatomical difficulties of measuring portal vein insulin noninvasively in humans before the hormone is extracted by the liver and quickly removed from the circulation. Peripheral concentrations of insulin or C-peptide, a peptide cosecreted with insulin, can be used to estimate their secretion profile, but mathematical deconvolution is required. Parametric and nonparametric approaches to the deconvolution problem are evaluated, alongside the assumptions and trade-offs required for their application in the quantification of unknown insulin secretory rates from known peripheral concentrations. Finally, we discuss the therapeutical implication of targeting impaired pulsatile secretion and its diagnostic value as an early indicator of ß-cell stress.

17.
Commun Biol ; 4(1): 594, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34012065

RESUMEN

Type 2 diabetes is characterized by ß and α cell dysfunction. We used phasor-FLIM (Fluorescence Lifetime Imaging Microscopy) to monitor oxidative phosphorylation and glycolysis in living islet cells before and after glucose stimulation. In healthy cells, glucose enhanced oxidative phosphorylation in ß cells and suppressed oxidative phosphorylation in α cells. In Type 2 diabetes, glucose increased glycolysis in ß cells, and only partially suppressed oxidative phosphorylation in α cells. FLIM uncovers key perturbations in glucose induced metabolism in living islet cells and provides a sensitive tool for drug discovery in diabetes.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Imagen Molecular/métodos , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Glucagón/efectos de los fármacos , Glucólisis , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Masculino , Ratones , Microscopía Fluorescente , Fosforilación Oxidativa , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas
18.
J Clin Endocrinol Metab ; 106(6): 1702-1709, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33606017

RESUMEN

OBJECTIVE: Pulsatile insulin secretion is impaired in diseases such as type 2 diabetes that are characterized by insulin resistance. This has led to the suggestion that changes in insulin pulsatility directly impair insulin signaling. We sought to examine the effects of pulse characteristics on insulin action in humans, hypothesizing that a decrease in pulse amplitude or frequency is associated with impaired hepatic insulin action. METHODS: We studied 29 nondiabetic subjects on two occasions. On 1 occasion, hepatic and peripheral insulin action was measured using a euglycemic clamp. The deuterated water method was used to estimate the contribution of gluconeogenesis to endogenous glucose production. On a separate study day, we utilized nonparametric stochastic deconvolution of frequently sampled peripheral C-peptide concentrations during fasting to reconstruct portal insulin secretion. In addition to measuring basal and pulsatile insulin secretion, we used approximate entropy to measure orderliness and Fourier transform to measure the average, and the dispersion of, insulin pulse frequencies. RESULTS: In univariate analysis, basal insulin secretion (R2 = 0.16) and insulin pulse amplitude (R2 = 0.09) correlated weakly with insulin-induced suppression of gluconeogenesis. However, after adjustment for age, sex, and weight, these associations were no longer significant. The other pulse characteristics also did not correlate with the ability of insulin to suppress endogenous glucose production (and gluconeogenesis) or to stimulate glucose disappearance. CONCLUSIONS: Overall, our data demonstrate that insulin pulse characteristics, considered independently of other factors, do not correlate with measures of hepatic and peripheral insulin sensitivity in nondiabetic humans.


Asunto(s)
Glucosa/metabolismo , Secreción de Insulina/fisiología , Insulina/metabolismo , Adulto , Glucemia/metabolismo , Péptido C/metabolismo , Ayuno/fisiología , Femenino , Gluconeogénesis/fisiología , Técnica de Clampeo de la Glucosa , Humanos , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Persona de Mediana Edad
19.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L451-L466, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33404366

RESUMEN

Supplemental O2 (hyperoxia) is necessary for preterm infant survival but is associated with development of bronchial airway hyperreactivity and childhood asthma. Understanding early mechanisms that link hyperoxia to altered airway structure and function are key to developing advanced therapies. We previously showed that even moderate hyperoxia (50% O2) enhances intracellular calcium ([Ca2+]i) and proliferation of human fetal airway smooth muscle (fASM), thereby facilitating bronchoconstriction and remodeling. Here, we introduce cellular clock biology as a novel mechanism linking early oxygen exposure to airway biology. Peripheral, intracellular clocks are a network of transcription-translation feedback loops that produce circadian oscillations with downstream targets highly relevant to airway function and asthma. Premature infants suffer circadian disruption whereas entrainment strategies improve outcomes, highlighting the need to understand relationships between clocks and developing airways. We hypothesized that hyperoxia impacts clock function in fASM and that the clock can be leveraged to attenuate deleterious effects of O2 on the developing airway. We report that human fASM express core clock machinery (PER1, PER2, CRY1, ARNTL/BMAL1, CLOCK) that is responsive to dexamethasone (Dex) and altered by O2. Disruption of the clock via siRNA-mediated PER1 or ARNTL knockdown alters store-operated calcium entry (SOCE) and [Ca2+]i response to histamine in hyperoxia. Effects of O2 on [Ca2+]i are rescued by driving expression of clock proteins, via effects on the Ca2+ channels IP3R and Orai1. These data reveal a functional fASM clock that modulates [Ca2+]i regulation, particularly in hyperoxia. Harnessing clock biology may be a novel therapeutic consideration for neonatal airway diseases following prematurity.


Asunto(s)
Bronquios/metabolismo , Hiperreactividad Bronquial/metabolismo , Calcio/metabolismo , Relojes Circadianos , Hiperoxia/fisiopatología , Músculo Liso/metabolismo , Oxígeno/metabolismo , Animales , Bronquios/patología , Hiperreactividad Bronquial/patología , Proliferación Celular , Células Cultivadas , Femenino , Feto/metabolismo , Feto/patología , Humanos , Recién Nacido , Masculino , Ratones Endogámicos C57BL , Músculo Liso/patología
20.
Endocrinology ; 162(1)2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32455427

RESUMEN

Intrinsic ß-cell circadian clocks are important regulators of insulin secretion and overall glucose homeostasis. Whether the circadian clock in ß-cells is perturbed following exposure to prodiabetogenic stressors such as proinflammatory cytokines, and whether these perturbations are featured during the development of diabetes, remains unknown. To address this, we examined the effects of cytokine-mediated inflammation common to the pathophysiology of diabetes, on the physiological and molecular regulation of the ß-cell circadian clock. Specifically, we provide evidence that the key diabetogenic cytokine IL-1ß disrupts functionality of the ß-cell circadian clock and impairs circadian regulation of glucose-stimulated insulin secretion. The deleterious effects of IL-1ß on the circadian clock were attributed to impaired expression of key circadian transcription factor Bmal1, and its regulator, the NAD-dependent deacetylase, Sirtuin 1 (SIRT1). Moreover, we also identified that Type 2 diabetes in humans is associated with reduced immunoreactivity of ß-cell BMAL1 and SIRT1, suggestive of a potential causative link between islet inflammation, circadian clock disruption, and ß-cell failure. These data suggest that the circadian clock in ß-cells is perturbed following exposure to proinflammatory stressors and highlights the potential for therapeutic targeting of the circadian system for treatment for ß-cell failure in diabetes.


Asunto(s)
Relojes Circadianos/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Interleucina-1beta/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Anciano , Animales , Relojes Circadianos/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Células Secretoras de Insulina/metabolismo , Insulinoma , Interleucina-1beta/efectos adversos , Interleucina-1beta/genética , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Ratas , Sirtuinas/genética , Sirtuinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...