Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AMB Express ; 12(1): 1, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989907

RESUMEN

Yersiniosis is an infectious zoonotic disease caused by two enteropathogenic species of Gram-negative genus Yersinia: Yersinia enterocolitica and Yersinia pseudotuberculosis. Pigs and other wild and domestic animals are reservoirs for these bacteria. Infection is usually spread to humans by ingestion of contaminated food. Yersiniosis is considered a rare disease, but recent studies indicate that it is overlooked in the diagnostic process therefore the infections with this bacterium are not often identified. Reliable diagnosis of Yersiniosis by culturing is difficult due to the slow growth of the bacteria easily overgrown by other more rapidly growing microbes unless selec-tive growth media is used. Phage adhesins recognizing bacteria in a specific manner can be an excellent diagnostic tool, es-pecially in the diagnosis of pathogens difficult for culturing. In this study, it was shown that Gp17, the tail fiber protein (TFP) of phage φYeO3-12, specifically recognizes only the pathogenic Yersinia enterocolitica serotype O:3 (YeO:3) bacteria. The ELISA test used in this work confirmed the specific interaction of this protein with YeO:3 and demonstrated a promising tool for developing the pathogen recognition method based on phage adhesins.

2.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205737

RESUMEN

3-bromopuryvate (3-BP) is a compound with unique antitumor activity. It has a selective action against tumor cells that exhibit the Warburg effect. It has been proven that the action of 3-BP is pleiotropic: it acts on proteins, glycolytic enzymes, reduces the amount of ATP, induces the formation of ROS (reactive oxygen species), and induces nuclear DNA damage. Mitochondria are important organelles for the proper functioning of the cell. The production of cellular energy (ATP), the proper functioning of the respiratory chain, or participation in the production of amino acids are one of the many functions of mitochondria. Here, for the first time, we show on the yeast model that 3-BP acts in the eukaryotic cell also by influence on mitochondria and that agents inhibiting mitochondrial function can potentially be used in cancer therapy with 3-BP. We show that cells with functional mitochondria are more resistant to 3-BP than rho0 cells. Using an MTT assay (a colorimetric assay for assessing cell metabolic activity), we demonstrated that 3-BP decreased mitochondrial activity in yeast in a dose-dependent manner. 3-BP induces mitochondrial-dependent ROS generation which results in ∆sod2, ∆por1, or ∆gpx1 mutant sensitivity to 3-BP. Probably due to ROS mtDNA lesions rise during 3-BP treatment. Our findings may have a significant impact on the therapy with 3-BP.


Asunto(s)
Antineoplásicos/farmacología , ADN Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Piruvatos/farmacología , Evaluación Preclínica de Medicamentos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae
3.
Cells ; 9(5)2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397119

RESUMEN

3-bromopyruvate (3-BP) is a small molecule with anticancer and antimicrobial activities. 3-BP is taken up selectively by cancer cells' mono-carboxylate transporters (MCTs), which are highly overexpressed by many cancers. When 3-BP enters cancer cells it inactivates several glycolytic and mitochondrial enzymes, leading to ATP depletion and the generation of reactive oxygen species. While mechanisms of 3-BP uptake and its influence on cell metabolism are well understood, the impact of 3-BP at certain concentrations on DNA integrity has never been investigated in detail. Here we have collected several lines of evidence suggesting that 3-BP induces DNA damage probably as a result of ROS generation, in both yeast and human cancer cells, when its concentration is sufficiently low and most cells are still viable. We also demonstrate that in yeast 3-BP treatment leads to generation of DNA double-strand breaks only in S-phase of the cell cycle, possibly as a result of oxidative DNA damage. This leads to DNA damage, checkpoint activation and focal accumulation of the DNA response proteins. Interestingly, in human cancer cells exposure to 3-BP also induces DNA breaks that trigger H2A.X phosphorylation. Our current data shed new light on the mechanisms by which a sufficiently low concentration of 3-BP can induce cytotoxicity at the DNA level, a finding that might be important for the future design of anticancer therapies.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN , Piruvatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Recombinación Homóloga/genética , Humanos
4.
Front Plant Sci ; 11: 631643, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537055

RESUMEN

Plasma membrane intrinsic proteins (PIPs) are channels facilitating the passive diffusion of water and small solutes. Arabidopsis PIP2;7 trafficking occurs through physical interaction with SNARE proteins including the syntaxin SYP121, a plasma membrane Qa-SNARE involved in membrane fusion. To better understand the interaction mechanism, we aimed at identifying the interaction motifs in SYP121 and PIP2;7 using ratiometric bimolecular fluorescence complementation assays in Nicotiana benthamiana. SYP121 consists of four regions, N, H, Q, and C, and sequential deletions revealed that the C region, containing the transmembrane domain, as well as the H and Q regions, containing the Habc and Qa-SNARE functional domains, interact with PIP2;7. Neither the linker between the Habc and the Qa-SNARE domains nor the H or Q regions alone could fully restore the interaction with PIP2;7, suggesting that the interacting motif depends on the conformation taken by the HQ region. When investigating the interacting motif(s) in PIP2;7, we observed that deletion of the cytosolic N- and/or C- terminus led to a significant decrease in the interaction with SYP121. Shorter deletions revealed that at the N-terminal amino acid residues 18-26 were involved in the interaction. Domain swapping experiments between PIP2;7 and PIP2;6, a PIP isoform that does not interact with SYP121, showed that PIP2;7 N-terminal part up to the loop C was required to restore the full interaction signal, suggesting that, as it is the case for SYP121, the interaction motif(s) in PIP2;7 depend on the protein conformation. Finally, we also showed that PIP2;7 physically interacted with other Arabidopsis SYP1s and SYP121 orthologs.

5.
Methods Mol Biol ; 2049: 389-402, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31602623

RESUMEN

The dramatic increase of cancer in the world drives the search for a new generation of drugs useful in effective and safe chemotherapy. In the postgenomic era the use of the yeast Saccharomyces cerevisiae as a simple eukaryotic model is required in molecular studies of biological activity of compounds that may be potential drugs in the future. The phenotype analysis of numerous deletion mutants (from the EUROSCARF collection) allows one to define the specific influence of tested compound on metabolism, stress generation and response of eukaryotic cell to stress. Moreover, it allows one to determine cell viability, design of new drugs and doses used in preclinical and clinical trials. Undoubtedly, this is also a good way to save the lives of many laboratory animals. Here we present a simple and cheap new approach to study the metabolic and stress response pathways in eukaryotic cells involved in the response to tested compounds (e.g., anticancer agents). The precise determination of biological activity mechanisms of tested compounds at the molecular level can contribute to the fast introduction of new cancer therapies, which is extremely important nowadays.


Asunto(s)
Antineoplásicos/farmacología , Genoma Fúngico/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Metabolismo Energético/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Mutación , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...