Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473254

RESUMEN

Proton therapy is a promising modality for craniospinal irradiation (CSI), offering dosimetric advantages over conventional treatments. While significant attention has been paid to spine fields, for the brain fields, only dose reduction to the lens of the eye has been reported. Hence, the objective of this study is to assess the potential gains and feasibility of adopting different treatment planning techniques for the entire brain within the CSI target. To this end, eight previously treated CSI patients underwent retrospective replanning using various techniques: (1) intensity modulated proton therapy (IMPT) optimization, (2) the modification/addition of field directions, and (3) the pre-optimization removal of superficially placed spots. The target coverage robustness was evaluated and dose comparisons for lenses, cochleae, and scalp were conducted, considering potential biological dose increases. The target coverage robustness was maintained across all plans, with minor reductions when superficial spot removal was utilized. Single- and multifield optimization showed comparable target coverage robustness and organ-at-risk sparing. A significant scalp sparing was achieved in adults but only limited in pediatric cases. Superficial spot removal contributed to scalp V30 Gy reduction at the expense of lower coverage robustness in specific cases. Lens sparing benefits from multiple field directions, while cochlear sparing remains impractical. Based on the results, all investigated plan types are deemed clinically adoptable.

2.
Clin Transl Radiat Oncol ; 31: 28-33, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34522796

RESUMEN

PURPOSE: Optic nerves are part of the craniospinal irradiation (CSI) target volume. Modern radiotherapy techniques achieve highly conformal target doses while avoiding organs-at-risk such as the lens. The magnitude of eye movement and its influence on CSI target- and avoidance volumes are unclear. We aimed to evaluate the movement-range of lenses and optic nerves and its influence on dose distribution of several planning techniques. METHODS: Ten volunteers underwent MRI scans in various gaze directions (neutral, left, right, cranial, caudal). Lenses, orbital optic nerves, optic discs and CSI target volumes were delineated. 36-Gy cranial irradiation plans were constructed on synthetic CT images in neutral gaze, with Volumetric Modulated Arc Therapy, pencil-beam scanning proton therapy, and 3D-conventional photons. Movement-amplitudes of lenses and optic discs were analyzed, and influence of gaze direction on lens and orbital optic nerve dose distribution. RESULTS: Mean eye structures' shift from neutral position was greatest in caudal gaze; -5.8±1.2 mm (±SD) for lenses and 7.0±2.0 mm for optic discs. In 3D-conventional plans, caudal gaze decreased Mean Lens Dose (MLD). In VMAT and proton plans, eye movements mainly increased MLD and diminished D98 orbital optic nerve (D98OON) coverage; mean MLD increased up to 5.5 Gy [total ΔMLD range -8.1 to 10.0 Gy], and mean D98OON decreased up to 3.3 Gy [total ΔD98OON range -13.6 to 1.2 Gy]. VMAT plans optimized for optic disc Internal Target Volume and lens Planning organ-at-Risk Volume resulted in higher MLD over gaze directions. D98OON became ≥95% of prescribed dose over 95/100 evaluated gaze directions, while all-gaze bilateral D98OON significantly changed in 1 of 10 volunteers. CONCLUSION: With modern CSI techniques, eye movements result in higher lens doses and a mean detriment for orbital optic nerve dose coverage of <10% of prescribed dose.

3.
Radiother Oncol ; 154: 194-200, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32956707

RESUMEN

PURPOSE: Large-field photon radiotherapy is current standard in the treatment of cervical cancer patients. However, with the increasing availability of Pencil Beam Scanning Proton Therapy (PBS-PT) and robust treatment planning techniques, protons may have significant advantages for cervical cancer patients in the reduction of toxicity. In this study, PBS-PT and photon Volumetric Modulated Arc Therapy (VMAT) were compared, examining target coverage and organ at risk (OAR) dose, taking inter- and intra-fraction motion into account. MATERIALS AND METHODS: Twelve cervical cancer patients were included in this in-silico planning study. In all cases, a planning CT scan, five weekly repeat CT scans (reCTs) and an additional reCT 10 min after the first reCT were available. Two-arc VMAT and robustly optimised two- and four-field (2F and 4F) PBS-PT plans were robustly evaluated on planCTs and reCTs using set-up and range uncertainty. Nominal OAR doses and voxel-wise minimum target coverage robustness were compared. RESULTS: Average voxel-wise minimum accumulated doses for pelvic target structures over all patients were adequate for both photon and proton treatment techniques (D98 > 95%, [91.7-99.3%]). Average accumulated dose of the para-aortic region was lower than the required 95%, D98 > 94.4% [91.1-98.2%]. With PBS-PT 4F, dose to all OARs was significantly lower than with VMAT. Major differences were observed for mean bowel bag V15Gy: 60% [39-70%] for VMAT vs 30% [10-52%] and 32% [9-54%] for PBS-PT 2F and 4F and for mean bone marrow V10Gy: 88% [82-97%] for VMAT vs 66% [60-73%] and 67% [60-75%] for PBS-PT 2F and 4F. CONCLUSION: Robustly optimised PBS-PT for cervical cancer patients shows equivalent target robustness against inter- and intra-fraction variability compared to VMAT, and offers significantly better OAR sparing.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Neoplasias del Cuello Uterino , Femenino , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Neoplasias del Cuello Uterino/radioterapia
4.
J Alzheimers Dis ; 53(3): 933-42, 2016 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-27340850

RESUMEN

Aluminum, being the most abundant metal in the earth's crust, is widely distributed in the environment, and is routinely taken up by the human body through ingestion and inhalation. Aluminum is not considered an essential element and it can be toxic in high concentrations. Most of the body burden of aluminum is stored in the bones. Aluminum has been postulated to be involved in the causality of Alzheimer's disease. A system for non-invasive measurement of bone aluminum using the in vivo neutron activation analysis technique has been developed and previously reported in the literature by our group. The results are reported as ratio of Al to Ca in order to eliminate the variations in beam parameters and geometry as well as the physical variations among the subjects such as size of the hand and bone structure. This pilot study included 30 subjects, 15 diagnosed with Alzheimer's disease in mild and moderate stages and 15 control subjects, all of whom were 60 years of age or older. The mean value of aluminum for the control group was 2.7±8.2µg Al/g Ca (inverse-variance weighted mean 3.5±0.9µg Al/g Ca) and for the Alzheimer's disease subjects was 12.5±13.1µg Al/g Ca (inverse-variance weighted mean 7.6±0.6µg Al/g Ca). The difference between the mean of the Alzheimer's disease group and the mean of the control group was 9.8±15.9µg Al/g Ca, with a p-value of 0.02. An age-dependent linear increase in bone aluminum concentration was observed for all subjects. The difference in serum aluminum levels between the two groups did not reach significance.


Asunto(s)
Aluminio/análisis , Enfermedad de Alzheimer/patología , Huesos/química , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Activación de Neutrones/métodos , Proyectos Piloto , Escalas de Valoración Psiquiátrica , Espectrometría gamma
5.
J Appl Clin Med Phys ; 17(2): 391-404, 2016 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-27074461

RESUMEN

Existing proton therapy pencil-beam scanning (PBS) systems have limitations on the minimum range to which a patient can be treated. This limitation arises from practical considerations, such as beam current intensity, layer spacing, and delivery time. The range shifter (RS) - a slab of stopping material inserted between the nozzle and the patient - is used to reduce the residual range of the incident beam so that the treatment ranges can be extended to shallow depths. Accurate modeling of the RS allows one to calculate the beam spot size entering the patient, given the proton energy, for arbitrary positions and thicknesses of the RS in the beam path. The Eclipse version 11 (v11) treatment planning system (TPS) models RS-induced beam widening by incorporating the scattering properties of the RS material into the V-parameter. Monte Carlo simulations with Geant4 code and analytical calculations using the Fermi-Eyges (FE) theory with Highland approximation of multiple Coulomb scattering (MCS) were employed to calculate proton beam widening due to scattering in the RS. We demonstrated that both methods achieved consistent results and could be used as a benchmark for evaluating the Eclipse V-parameter model. In most cases, the V-parameter model correctly predicted the beam spot size after traversing the RS. However, Eclipse did not enforce the constraint for a nonnegative covariance matrix when fitting the spot sizes to derive the phase space parameters, which resulted in incorrect calculations under specific conditions. In addition, Eclipse v11 incorrectly imposed limits on the individual values of the phase space parameters, which could lead to incorrect spot size values in the air calculated for beams with spot sigmas <3.8 mm. Notably, the TPS supplier (Varian) and hardware vendor (Ion Beam Applications) inconsistently refer to the RS position, which may result in improper spot size calculations.


Asunto(s)
Método de Montecarlo , Neoplasias/radioterapia , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Humanos , Radiometría , Dosificación Radioterapéutica
6.
Phys Med Biol ; 59(17): 5043-60, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25119333

RESUMEN

In passive scattering proton therapy, patient specific collimators (apertures) are used to laterally shape the proton beam, and compensators are employed to distally conform proton dose to the target. Brass is a commonly used material for apertures and recently a hybrid brass/stainless-steel (BR/SST) aperture design has been introduced to reduce treatment cost without clinical flow change. We measured stopping power and leakage dose for apertures made of stainless steel and brass in the Proton Therapy system. The linear stopping power ratios for stainless steel (type 304) and brass to water were calculated to be 5.46 and 5.51, respectively. Measured stopping power ratios of SST and BR were 5.51  ±  0.04 and 5.56  ±  0.08, respectively, which agrees with the calculated values within 1%. Leakage dose on the downstream surface of two slabs of Ø18 cm stainless steel apertures (total thickness of 6.5 cm) for the maximum available proton energy (235 MeV) was 1.283% ± 0.004% of the prescription dose, and was smaller compared to the 1.358% ± 0.005% leakage dose measured for existing brass apertures of identical physical dimensions. Therefore, the existing beam range limits for brass aperture slabs used at our institution with safety margin allowances for material composition and delivered beam range uncertainties can be safely applied for the new BR/SST aperture design. Potential range differences in the brass and stainless steel interface regions of the hybrid design were further investigated using EBT3 GafChromic film. Film dosimetry revealed no discernible range variations across the brass and stainless steel interface regions. Neutron dose to the patient from brass and stainless steel apertures was simulated using the Monte Carlo method. The results indicate that stainless steel produces similar patient neutron dose compared to brass. Material activation dose rates of stainless steel were measured over a period of 7 d after irradiation. The measurements showed that the proton induced SST activity is initially lower and also decays at a faster rate than that induced in brass, therefore requires no changes in radiation protection requirements on material disposals. The Monte Carlo simulation confirmed higher initial activity of brass than stainless steel shortly after irradiation. The hybrid BR/SST aperture design is suitable for clinical use to replace the current brass apertures for all clinically used proton ranges. The existing aperture disposal procedures also satisfy radiation protection requirements for the new hybrid type apertures.


Asunto(s)
Cobre/química , Terapia de Protones/instrumentación , Radiometría/instrumentación , Acero Inoxidable/química , Zinc/química , Humanos , Terapia de Protones/métodos , Radiometría/métodos , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...