Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(15): 17276-17289, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32208730

RESUMEN

The use of nanoparticles for the controlled drug delivery to cells has emerged as a good alternative to traditional systemic delivery. Quantum dots (QDs) offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging. In contrast, QDs may also pose risks to human health and the environment under certain conditions. Here, we demonstrated that a unique combination of nanocrystals core components (Ag-In-Zn-S) would eliminate the toxicity problem and increase their biomedical applications. The alloyed quaternary nanocrystals Ag-In-Zn-S (QDgreen, Ag1.0In1.2Zn5.6S9.4; QDred, Ag1.0In1.0Zn1.0S3.5) were used to transport new unsymmetrical bisacridine derivatives (UAs, C-2028 and C-2045) into lung H460 and colon HCT116 cancer cells for improving the cytotoxic and antitumor action of these compounds. UAs were coupled with QD through physical adsorption. The obtained results clearly indicate that the synthesized nanoconjugates exhibited higher cytotoxic activity than unbound compounds, especially toward lung H460 cancer cells. Importantly, unsymmetrical bisacridines noncovalently attached to QD strongly protect normal cells from the drug action. It is worth pointing out that QDgreen or QDred without UAs did not influence the growth of cancer and normal cells, which is consistent with in vivo results. In noncellular systems, at pH 5.5 and 4.0, which relates to the conditions of endosomes and lysosomes, the UAs were released from QD-UAs nanoconjugates. An increase of total lysosomes content was observed in H460 cells treated with QDs-UAs which can affect the release of the UAs from the conjugates. Moreover, confocal laser scanning microscopy analyses revealed that QD-UAs nanoconjugates enter H460 cells more efficiently than to HCT116 and normal cells, which may be the reason for their higher cytotoxicity against lung cancer. Summarizing, the noncovalent attachment of UAs to QDs increases the therapeutic efficiency of UAs by improving cytotoxicity toward lung H460 cancer cells and having protecting effects on normal cells.


Asunto(s)
Acridinas/química , Antineoplásicos/química , Puntos Cuánticos/química , Acridinas/metabolismo , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Desnudos , Plata/química , Sulfuros/química , Compuestos de Zinc/química
2.
Biosens Bioelectron ; 128: 23-31, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30616214

RESUMEN

Herein, we present that the reduced graphene oxide (rGO) doped with nanometer-sized ferrocene moieties is a new, excellent active material for redox sensors. Two distinct approaches were utilized for the modification of rGO. The first method was based on the covalent decoration of rGO via the addition of azomethine ylide generated from the ferrocenecarboxaldehyde oxime. The second approach utilized the adsorption of 1,1'-ferrocenedicarboxylic acid on the graphene sheet via the π-π stacking. The morphology of the synthesized graphene materials was studied by application of microscopic techniques, whereas the Raman data allowed the characteristics of the tested materials in terms of their structural properties. The tested graphene materials doped with ferrocene moieties were used as a bioactive platform for glucose oxidase (GOx) immobilization. The enzyme was immobilized onto the rGO materials in two ways: (i) using a crosslinking agent - glutaraldehyde (GA) and (ii) by formation of the amide bonds between carboxylic groups of rGO-Fc(COOH)2 and amine groups from enzyme. Ferrocene moieties present at the graphene surface play the role of mediator in the electron transfer between the redox center of GOx and the electrode surface. The functionality of the constructed biosensors has been tested on real samples. The results of the recovery rates showed a satisfying degree of accuracy toward determination of glucose concentration. Examination of the potential interfering species has demonstrated favorable sensitivity and selectivity of the designed biosensor for the detection of glucose.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Compuestos Ferrosos/química , Glucosa/aislamiento & purificación , Metalocenos/química , Transporte de Electrón , Enzimas Inmovilizadas/química , Glucosa/química , Glucosa Oxidasa/química , Humanos , Oxidación-Reducción
3.
Biosens Bioelectron ; 109: 83-89, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29529512

RESUMEN

The way of immobilization of the monoclonal antibody (type IgG) on the electrode surface has a significant effect on the amount of the immobilized protein and in consequence on current signal of protein. Herein, we demonstrate that the application of appropriately functionalized phenyl film allowed us to control the orientation of the antibody (Ab) molecules on the electrode surface. The influence of Ab orientation on the efficiency of antigen-antibody interaction was tested with an example blood plasma protein (ferritin; Ft). To control the orientation of Ab molecules the phenyl films containing -COOH or -NH2 groups were applied. Contrary to aminoethylophenyl layer, the carboxyphenyl film guaranteed the shortest distance between the redox center of the protein and the electrode surface. Additionally, the application of an external magnetic field together with magnetic nanoparticles allowed achieving the best orientation to observe well-defined ferritin current signals. The proposed method of ferritin detection can be successfully used in the concentration range of Ft between 0.1 and 30 µg dL-1. The detection limit for a carboxyphenyl film was estimated as 0.40 ±â€¯0.04 and 0.13 ±â€¯0.04 µg dL-1 for impedance and voltammetric measurements, respectively. In turn, for an aminoethylophenyl film the detection limit was 0.03 ±â€¯0.002 (electrochemical impedance spectroscopy; EIS) and 0.02 ±â€¯0.002 µg dL-1 (differential pulse voltammetry, DPV). The interday precision (reproducibility) was calculated (4.10 ÷ 9.10% RSD) together with the intraday precision / repeatability (3.20 ÷ 8.0% RSD) for the studied samples. The functionality of the sensor has been tested on rat blood samples. Based on the performed investigations it can be stated that the developed sensor was characterized by high selectivity and good sensitivity.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas/métodos , Ferritinas/aislamiento & purificación , Nanopartículas del Metal/química , Animales , Anticuerpos/química , Espectroscopía Dieléctrica , Ferritinas/química , Oro/química , Grafito/química , Límite de Detección , Ratas
4.
Nanoscale ; 10(3): 1286-1296, 2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29293251

RESUMEN

One way to limit the negative effects of anti-tumor drugs on healthy cells is targeted therapy employing functionalized drug carriers. Here we present a biocompatible and stable nanoconjugate of transferrin anchored to Ag-In-Zn-S quantum dots modified with 11-mercaptoundecanoic acid (Tf-QD) as a drug carrier versus typical anticancer drug, doxorubicin. Detailed investigations of Tf-QD nanoconjugates without and with doxorubicin by fluorescence studies and cytotoxic measurements showed that the biological activity of both the transferrin and doxorubicin was fully retained in the nanoconjugate. In particular, the intercalation capabilities of free doxorubicin versus ctDNA remained essentially intact upon its binding to the nanoconjugate. In order to evaluate these capabilities, we studied the binding constant of doxorubicin attached to Tf-QDs with ctDNA as well as the binding site size on the ctDNA molecule. The binding constant slightly decreased compared to that of free doxorubicin while the binding site size, describing the number of consecutive DNA lattice residues involved in the binding, increased. It was also demonstrated that the QDs alone and in the form of a nanoconjugate with Tf were not cytotoxic towards human non-small cell lung carcinoma (H460 cell line) and the tumor cell sensitivity of the DOX-Tf-QD nanoconjugate was comparable to that of doxorubicin alone.


Asunto(s)
Portadores de Fármacos/química , Nanoconjugados , Puntos Cuánticos/química , Transferrina/química , Aleaciones , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Humanos , Indio , Plata , Azufre , Zinc
5.
J Inorg Biochem ; 175: 148-153, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28753493

RESUMEN

Interactions of Cr species with nucleic acids in living organisms depend strongly on Cr oxidation state and the environmental conditions. As the effects of these interactions range from benign to pre-mutagenic to carcinogenic, careful assessment of the hazard they pose to human health is necessary. We have investigated methods that would enable quantifying the DNA damage caused by Cr species under varying environmental conditions, including UV, O2, and redox potential, using simple instrumental techniques which could be in future combined into a field-deployable instrumentation. We have employed electrochemical quartz crystal nanogravimetry (EQCN), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) to evaluate the extent of DNA damage expressed in terms of guanine oxidation yield (η) and changes in specific characteristics provided by these techniques. The effects of the interactions of Cr species with DNA were analyzed using a model calf thymus DNA (ctDNA) film on a gold electrode (Au@ctDNA) in different media, including: (i) Cr(VI), (ii) Cr(VI) reduced at -0.2V, (iii) Cr(III)+UV radiation+O2, and Cr(III), obtaining the η values: 7.4±1.4, 1.5±0.4, 1.1±0.31%, and 0%, respectively, thus quantifying the hazard posed. The EIS measurements have enabled utilizing the decrease in charge-transfer resistance (Rct) for ferri/ferrocyanide redox probe at an Au@ctDNA electrode to assess the oxidative ctDNA damage by Cr(VI) species. In this case, circular dichroism indicates an extensive damage to the ctDNA hydrogen bonding. On the other hand, Cr(III) species have not induced any damage to ctDNA, although the EQCN measurements show an electrostatic binding to DNA.


Asunto(s)
Cromo/química , ADN/química , Daño del ADN , Electricidad Estática
6.
Acta Biomater ; 45: 367-374, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27581396

RESUMEN

The control of the interactions of proteins with the support matrix plays a key role in medicine, drug delivery systems and diagnostics. Herein, we report that covalent anchoring of human transferrin to carbon-coated iron magnetic nanoparticles functionalized with carboxylic groups (Fe@C-COOH Nps) in the presence of magnetic field results in its conformational integrity and electroactivity. We have found that, the direct contact of human transferrin with Fe@C-COOH Nps does not lead to release of iron and in consequence to the irreversible conformational changes of the protein. Moreover, the examination of the direct electron transfer between Tf molecules from the conjugate and the electrode surface was possible. The quartz crystal microbalance with dissipation (QCM-D)- and thermogravimetric data (TGA) showed that under such conditions, in addition to a monolayer, an adlayer of the protein can be formed on Fe@C-COOH Nps at constant pH. STATEMENT OF SIGNIFICANCE: To our best knowledge this is the first paper that reports on covalent anchoring of human transferrin (Tf) to carbon-coated iron magnetic nanoparticles functionalized with carboxylic groups (Fe@C-COOH Nps) in the presence of magnetic field, which results in its conformational integrity and electroactivity. We showed that it is possible to attach, without changing pH, more than one single layer of transferrin to the Fe@C-COOH Nps. This is a very rare phenomenon in the case of proteins. We proved, using various experimental techniques, that the proposed methodology does not lead to release of iron from Tf molecules, what was the major problem so far. We believe that this finding opens new possibilities in targeting drug delivery systems and medical diagnostics.


Asunto(s)
Carbono/química , Hierro/química , Campos Magnéticos , Nanopartículas/química , Transferrina/química , Dicroismo Circular , Técnicas Electroquímicas , Electrodos , Oro/química , Humanos , Conformación Proteica , Tecnicas de Microbalanza del Cristal de Cuarzo , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...