Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37373015

RESUMEN

Circulating endothelial progenitor cells (EPCs) play a pivotal role in the repair of diseases in which angiogenesis is required. Although they are a potentially valuable cell therapy tool, their clinical use remains limited due to suboptimal storage conditions and, especially, long-term immune rejection. EPC-derived extracellular vesicles (EPC-EVs) may be an alternative to EPCs given their key role in cell-cell communication and expression of the same parental markers. Here, we investigated the regenerative effects of umbilical cord blood (CB) EPC-EVs on CB-EPCs in vitro. After amplification, EPCs were cultured in a medium containing an EVs-depleted serum (EV-free medium). Then, EVs were isolated from the conditioned medium with tangential flow filtration (TFF). The regenerative effects of EVs on cells were investigated by analyzing cell migration, wound healing, and tube formation. We also analyzed their effects on endothelial cell inflammation and Nitric Oxide (NO) production. We showed that adding different doses of EPC-EVs on EPCs does not alter the basal expression of the endothelial cell markers nor change their proliferative potential and NO production level. Furthermore, we demonstrated that EPC-EVs, when used at a higher dose than the physiological dose, create a mild inflammatory condition that activates EPCs and boosts their regenerative features. Our results reveal for the first time that EPC-EVs, when used at a high dose, enhance EPC regenerative functions without altering their endothelial identity.


Asunto(s)
Células Progenitoras Endoteliales , Vesículas Extracelulares , Humanos , Células Progenitoras Endoteliales/metabolismo , Sangre Fetal , Inflamación/metabolismo , Movimiento Celular , Células Cultivadas
2.
J Control Release ; 355: 501-514, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36764527

RESUMEN

A new paradigm has emerged recently, which consists in shifting from cell therapy to a more flexible acellular "extracellular vesicle (EV) therapy" approach, thereby opening a new and promising field in nanomedicine. Important technical limitations have still to be addressed for the large-scale production of clinical-grade EV. Cells are cultured in media supplemented with human platelet lysate (hPL) (xenogenic-free) or GMP-grade fetal calf serum (FCS). However, these additives contain high amounts of EV that cannot be separated from cell-secreted -EV. Therefore, cells are generally maintained in additive-free medium during the EV secretion phase, however this can substantially limit their survival. In the present work, we developed a method to prepare vesicle-free hPL (EV-free hPL) or vesicle-free FCS (EV-free FCS) using tangential flow filtration (TFF). We show a very efficient EV depletion (>98%) for both pure hPL and FCS, with a highly conserved protein content. Culture medium containing our EV-free additives supported the survival of human bone marrow MSC (BM-MSC). MSC could survive at least 216 h, their conditioned medium being collected and changed every 72 h. Both the cell survival and the cumulative EV production were substantially higher than in the starving conditions classically used for EV production. In EV-free hPL containing medium, we show that purified EV kept their morphologic and molecular characteristics throughout the production. Finally, we tested our additives with 3 other cell types, human primary Endothelial Colony Forming Cells (ECFC) and two non-adherent human cell lines, Jurkat and THP-1. We confirmed that both EV-free hPL and FCS were able to maintain cell survival and EV production for at least 216 h. Our method provides therefore a new option to help producing large amounts of EV from virtually any mammalian cells, particularly those that do not tolerate starvation. This method can apply to any animal serum for research and development purpose. Moreover, EV-free hPL is clinical-grade compatible and allows preparing xenobiotic-free media for massive therapeutic EV production in both 2D (cell plates) and 3D (bioreactor) setting.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Humanos , Células Cultivadas , Diferenciación Celular , Proliferación Celular , Plaquetas/metabolismo , Técnicas de Cultivo de Célula , Mamíferos
3.
Biology (Basel) ; 11(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36101361

RESUMEN

Background: Radiation cystitis (RC) results from chronic inflammation, fibrosis, and vascular damage. The urinary symptoms it causes have a serious impact on patients' quality of life. Despite the improvement in irradiation techniques, the incidence of radiation cystitis remains stable over time, and the therapeutic possibilities remain limited. Mesenchymal stem/stromal cells (MSC) appear to offer2 a promising therapeutic approach by promoting tissue repair through their paracrine action via extracellular vesicles (MSC-EVs) or conditioned medium from human mesenchymal stromal cells (MSC-CM). We assess the therapeutic potential of MSC-EVs or MSC-CM in an in vitro model of RC. Methods:in vitro RC was induced by irradiation of human bladder fibroblasts (HUBF) with the small-animal radiation research platform (SARRP). HUBF were induced towards an RC phenotype after 3 × 3.5 Gy irradiation in the presence of either MSC-EVs or MSC-CM, to assess their effect on fibrosis, angiogenesis, and inflammatory markers. Results: Our data revealed in vitro a higher therapeutic potential of MSC-EVs and MSC-CM in prevention of RC. This was confirmed by down-regulation of α-SMA and CTGF transcription, and the induction of the secretion of anti-fibrotic cytokines, such as IFNγ, IL10 and IL27 and the decrease in the secretion of pro-fibrotic cytokines, IGFBP2, IL1ß, IL6, IL18, PDGF, TNFα, and HGF, by irradiated HUBFs, conditioned with MSC-EVs or MSC-CM. The secretome of MSC (MSC-CM) or its subsecretome (MSC-EVs) are proangiogenic, with the ability to induce vessels from HUVEC cells, ensuring the management of bladder vascular lesions induced by irradiation. Conclusion: MSC-EVs and MSC-CM appear to have promising therapeutic potential in the prevention of RC in vitro, by targeting the three main stages of RC: fibrosis, inflammation and vascular damage.

4.
Altern Lab Anim ; 50(5): 339-348, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36062749

RESUMEN

Vero cells are one of the most frequently used cell types in virology. They can be used not only as a vehicle for the replication of viruses, but also as a model for investigating viral infectivity, cytopathology and vaccine production. There is increasing awareness of the need to limit the use of animal-derived components in cell culture media for a number of reasons, which include reducing the risk of contamination and decreasing costs related to the downstream processing of commercial products obtained via cell culture. The current study evaluates the use of protein hydrolysates (PHLs), also known as peptones, as partial substitutes for fetal bovine serum (FBS) in Vero cell culture. Eleven plant-based, two yeast-based, and three casein-based peptones were assessed, with different batches evaluated in the study. We tested the effects of three concentration ratios of FBS and peptone on Vero cell proliferation, four days after the initial cell seeding. Some of the tested peptones, when in combination with a minimal 1% level of FBS, supported cell proliferation rates equivalent to those achieved with 10% FBS. Collectively, our findings showed that plant-based peptones could represent promising options for the successful formulation of serum-reduced cell culture media for vaccine production. This is especially relevant in the context of the current COVID-19 pandemic, in view of the urgent need for SARS-CoV-2 virus production for certain types of vaccine. The current study contributes to the Three Rs principle of reduction, as well as addressing animal ethics concerns associated with FBS, by repurposing PHLs for use in cell culture.


Asunto(s)
COVID-19 , Peptonas , Animales , Caseínas , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Medios de Cultivo/farmacología , Humanos , Pandemias , Peptonas/metabolismo , Peptonas/farmacología , Hidrolisados de Proteína , SARS-CoV-2 , Albúmina Sérica Bovina , Células Vero
5.
Stem Cell Res Ther ; 11(1): 172, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381102

RESUMEN

BACKGROUND: Cardiovascular diseases are the main cause of morbidity and mortality worldwide. Restoring blood supply to ischemic tissues is an essential goal for the successful treatment of these diseases. Growth factor or gene therapy efficacy remains controversial, but stem cell transplantation is emerging as an interesting approach to stimulate angiogenesis. Among the different stem cell populations, cord blood-endothelial progenitor cells (CB-EPCs) and more particularly cord blood-endothelial progenitor cell-derived endothelial colony forming cells (CB-ECFCs) have a great proliferative potential without exhibiting signs of senescence. Even if it was already described that CB-ECFCs were able to restore blood perfusion in hind-limb ischemia in an immunodeficient mouse model, until now, the immunogenic potential of allogenic CB-ECFCs remains controversial. Therefore, our objectives were to evaluate the immune tolerance potency of CB-ECFCs and their capacity to restore a functional vascular network under ischemic condition in immunocompetent mice. METHODS: In vitro, the expression and secretion of immunoregulatory markers (HLA-G, IL-10, and TGF-ß1) were evaluated on CB-ECFCs. Moreover, CB-ECFCs were co-cultured with activated peripheral blood mononuclear cells (PBMCs) for 6 days. PBMC proliferation was evaluated by [3H]-thymidine incorporation on the last 18 h. In vivo, CB-ECFCs were administered in the spleen and muscle of immunocompetent mice. Tissues were collected at day 14 after surgery. Finally, CB-ECFCs were injected intradermally in C57BL/6JRj mice close to ischemic macrovessel induced by thermal cauterization. Mice recovered until day 5 and were imaged, twice a week until day 30. RESULTS: Firstly, we demonstrated that CB-ECFCs expressed HLA-G, IL-10, and TGF-ß1 and secreted IL-10 and TGF-ß1 and that they could display immunosuppressive properties in vitro. Secondly, we showed that CB-ECFCs could be tolerated until 14 days in immunocompetent mice. Thirdly, we revealed in an original ischemic model of dorsal chamber that CB-ECFCs were integrated in a new functional vascular network. CONCLUSION: These results open up new perspectives about using CB-ECFCs as an allogeneic cell therapy product and gives new impulse to the treatment of cardiovascular diseases.


Asunto(s)
Leucocitos Mononucleares , Neovascularización Fisiológica , Animales , Células Cultivadas , Sangre Fetal , Miembro Posterior , Isquemia/terapia , Ratones , Ratones Endogámicos C57BL
6.
Front Cell Dev Biol ; 8: 581436, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33384991

RESUMEN

Mesenchymal stromal cell (MSC)-based cell therapy has received great interest in regenerative medicine. Priming the cells during the culture phase can improve their efficacy and/or survival after injection. The literature suggests that MSC extracellular vesicles (EV) can recapitulate a substantial part of the beneficial effects of the cells they originate from, and that micro-RNAs (miRNAs) are important players in EV biological action. Here, our aim was to determine if two classical priming methods of MSC, interferon-gamma (IFNγ) and hypoxia (HYP), could modify their EV miRNA content. Human bone marrow MSCs (BM-MSCs) from five healthy donors were cultured with IFNγ or in HYP or in control (CONT) conditions. The conditioned media were collected after 48 h in serum-free condition and EV were isolated by ultracentrifugation. Total RNA was isolated, pools of CONT, IFN, and HYP cDNA were prepared, and a miRNA profiling was performed using RT-qPCR. Then, miRNAs were selected based on their detectability and measured on each individual EV sample. Priming had no effect on EV amount or size distribution. A set of 81 miRNAs was detected in at least one of the pools of EVs. They were measured on each individual sample; 41 miRNAs were detected in all samples. The principal component analysis (PCA) failed to discriminate the groups. HYP induced a significant decrease in EV hsa-miR-34a-3p content and IFN induced a significant increase in five miRNAs (hsa-miR-25-3p, hsa-miR-106a-5p, hsa-miR-126-3p, hsa-miR-451a, and hsa-miR-665). Taken together, we found only limited alterations in the miRNA landscape of MSC EV with a high inter-individual variability.

7.
Proteomics ; 19(21-22): e1900025, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31390680

RESUMEN

Hepatocellular carcinoma (HCC) is the second cause of cancer-related deaths worldwide. A clearer understanding of the molecular mechanisms underlying tumor growth and invasiveness remains crucial for developing new therapies. Here, the expression of tetraspanins, a family of plasma membrane organizers involved in tumor progression, has been addressed. Integrative approaches combining transcriptomics and bioinformatics allow demonstrating the induced and heterogeneous expression of Tspan15 in HCC. Tspan15 positive tumors exhibit signatures related to hepatic progenitor cells as well as recurrence of cancer. Immunohistochemistry experiments confirm Tspan15 expression in the subset of HCC expressing stemness-related markers such as EpCAM and Cytokeratin-19. Functional networks reveal that most of these genes expressed in correlation to Tspan15 support cell proliferation. Furthermore, Tspan15 overexpression in the hepatoma cell line HepG2 significantly increases cell proliferation. A quantitative proteomic analysis of the secretome reveals a higher abundance of the protein connective tissue growth factor (CTGF), a pleiotropic matricellular signaling protein. Proteomic profiling of Tspan15 complexes allows identifying numerous membrane proteins including several growth factor receptors. Finally, Tspan15 increases ERK1/2 phosphorylation that directly controls CTGF expression and secretion. In conclusion, Tspan15 is a new stemness-related marker in HCC which exhibits high potential of tumor growth and recurrence.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Células Madre Neoplásicas/metabolismo , Tetraspaninas/metabolismo , Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Membrana Celular/metabolismo , Proliferación Celular , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , Proteómica , Tetraspaninas/genética
9.
J Cell Biol ; 199(3): 481-96, 2012 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-23091066

RESUMEN

The metalloprotease ADAM10/Kuzbanian catalyzes the ligand-dependent ectodomain shedding of Notch receptors and activates Notch. Here, we show that the human tetraspanins of the evolutionary conserved TspanC8 subfamily (Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33) directly interact with ADAM10, regulate its exit from the endoplasmic reticulum, and that four of them regulate ADAM10 surface expression levels. In an independent RNAi screen in Drosophila, two TspanC8 genes were identified as Notch regulators. Functional analysis of the three Drosophila TspanC8 genes (Tsp3A, Tsp86D, and Tsp26D) indicated that these genes act redundantly to promote Notch signaling. During oogenesis, TspanC8 genes were up-regulated in border cells and regulated Kuzbanian distribution, Notch activity, and cell migration. Furthermore, the human TspanC8 tetraspanins Tspan5 and Tspan14 positively regulated ligand-induced ADAM10-dependent Notch1 signaling. We conclude that TspanC8 tetraspanins have a conserved function in the regulation of ADAM10 trafficking and activity, thereby positively regulating Notch receptor activation.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Movimiento Celular/fisiología , Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Notch1/metabolismo , Tetraspaninas/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Apoptosis , Western Blotting , Proliferación Celular , Células Cultivadas , Drosophila/genética , Citometría de Flujo , Humanos , Técnicas para Inmunoenzimas , Proteínas de la Membrana/genética , Mutación/genética , Transporte de Proteínas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Notch1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tetraspaninas/genética , Transgenes/genética
10.
J Immunol ; 181(10): 7002-13, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18981120

RESUMEN

Several cytokines and growth factors are released by proteolytic cleavage of a membrane-anchored precursor, through the action of ADAM (a disintegrin and metalloprotease) metalloproteases. The activity of these proteases is regulated through largely unknown mechanisms. In this study we show that Ab engagement of several tetraspanins (CD9, CD81, CD82) increases epidermal growth factor and/or TNF-alpha secretion through a mechanism dependent on ADAM10. The effect of anti-tetraspanin mAb on TNF-alpha release is rapid, not relayed by intercellular signaling, and depends on an intact MEK/Erk1/2 pathway. It is also associated with a concentration of ADAM10 in tetraspanin-containing patches. We also show that a large fraction of ADAM10 associates with several tetraspanins, indicating that ADAM10 is a component of the "tetraspanin web." These data show that tetraspanins regulate the activity of ADAM10 toward several substrates, and illustrate how membrane compartmentalization by tetraspanins can control the function of cell surface proteins such as ectoproteases.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Antígenos CD/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Proteína Kangai-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas ADAM/inmunología , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide/inmunología , Anticuerpos Monoclonales/inmunología , Antígenos CD/inmunología , Western Blotting , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Factor de Crecimiento Epidérmico/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Proteína Kangai-1/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas de la Membrana/inmunología , Microscopía Confocal , Interferencia de ARN , Transducción de Señal/inmunología , Tetraspanina 28 , Tetraspanina 29 , Transfección , Factor de Necrosis Tumoral alfa/inmunología
11.
Regul Pept ; 122(2): 119-29, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15380929

RESUMEN

Epidermal growth factor (EGF) is present in kidney membranes as an integral type I precursor protein, enzymatically processed to release immunoreactive materials in urine or incubation medium. The aim of this work was the elucidation of both the anchor of the serine protease activity that processes pro-EGF, and the determination of the steps of the enzymatic processing. Quantification of EGF containing molecules by RIA following gel filtration analysis demonstrated that the membrane precursor is first shed from the kidney membrane principally into a 170-kDa soluble precursor. This entire ectodomain is further processed into a 70-kDa precursor and finally into the mature 5.9 kDa urinary EGF. These species correspond to the ones found in urines. Both shedding and maturation events are clearly realized by membrane anchored serine protease activity, which remains active in detergent. By use of wild-type and knockout mice urines, we found that tissue kallikrein (TK) was not involved in the regulation of this processing.


Asunto(s)
Membrana Celular/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Calicreínas/metabolismo , Riñón/metabolismo , Fragmentos de Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/enzimología , Cromatografía en Gel , Factor de Crecimiento Epidérmico/química , Factor de Crecimiento Epidérmico/inmunología , Calicreínas/deficiencia , Calicreínas/genética , Riñón/enzimología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Precursores de Proteínas/química , Precursores de Proteínas/inmunología , Ratas
12.
J Biol Chem ; 278(46): 45255-68, 2003 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-12947092

RESUMEN

Epidermal growth factor receptor (EGFR) ligands are synthesized as type I membrane protein precursors exposed at the cell surface. Shedding of the ectodomain of these proteins is the way cells regulate the equilibrium between cell-associated and diffusible forms of these growth factors. Whereas the regulated shedding of transforming growth factor-alpha, HB-EGF, and amphiregulin precursors have been clearly established, regulation of full-length pro-EGF shedding has not been clearly demonstrated. Here, using both wild-type and M2 mutant CHO-K1 as well as HeLa cell lines transiently transfected with epitope-tagged rat pro-EGF expression plasmid, we demonstrate that these cells synthesize EGF as a high molecular weight membrane-associated precursor glycoprotein expressed at the cell surface. All cell lines are able to release the entire ectodomain of pro-EGF in the extracellular medium following juxtamembrane cleavage of the precursor once it is present at the cell surface. More significantly we clearly established that CHO-M2 and HeLa cells only constitutively release low levels of pro-EGF. This shedding is a regulated phenomenon in wild-type CHO cells where it can be induced by different agents such as phorbol 12-myristate 13-acetate (PMA), pervanadate, and serum but not by calcium ionophores. Using specific inhibitors as well as protein kinase C (PKC) depletion, PMA stimulation was shown to be completely dependent on PKC activation whereas pervanadate and serum stimulation were not. Regulated ectodomain shedding involves the activity of a zinc metalloprotease as determined by inhibition with phenantrolin and TAPI-2 and by the results obtained with the CHO-M2 shedding defective mutant cell line. Comparison of the ability of CHO and HeLa cell lines to shed pro-EGF and pro-TNF-alpha upon stimulation greatly suggests that TACE (ADAM 17) may not be the ectoprotease involved in the secretion of pro-EGF ectodomain and that this protease, which remains to be identified, shows a restricted cellular expression pattern.


Asunto(s)
Membrana Celular/metabolismo , Factor de Crecimiento Epidérmico/química , Zinc/química , Proteínas ADAM , Proteína ADAM17 , Animales , Células CHO , Calcio/metabolismo , Clonación Molecular , Cricetinae , ADN Complementario/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Epítopos/química , Células HeLa , Humanos , Ionóforos/farmacología , Cinética , Metaloendopeptidasas/metabolismo , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Radioinmunoensayo , Ratas , Factores de Tiempo , Transfección , Factor de Necrosis Tumoral alfa/metabolismo , Vanadatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA