Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 16083, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992199

RESUMEN

Extracellular vesicles (EVs) are a new mechanism of cellular communication, by delivering their cargo into target cells to modulate molecular pathways. EV-mediated crosstalk contributes to tumor survival and resistance to cellular stress. However, the role of EVs in B-cell Acute Lymphoblastic Leukaemia (B-ALL) awaits to be thoroughly investigated. We recently published that ActivinA increases intracellular calcium levels and promotes actin polymerization in B-ALL cells. These biological processes guide cytoskeleton reorganization, which is a crucial event for EV secretion and internalization. Hence, we investigated the role of EVs in the context of B-ALL and the impact of ActivinA on this phenomenon. We demonstrated that leukemic cells release a higher number of EVs in response to ActivinA treatment, and they can actively uptake EVs released by other B-ALL cells. Under culture-induced stress conditions, EVs coculture promoted cell survival in B-ALL cells in a dose-dependent manner. Direct stimulation of B-ALL cells with ActivinA or with EVs isolated from ActivinA-stimulated cells was even more effective in preventing cell death. This effect can be possibly ascribed to the increase of vesiculation and modifications of EV-associated microRNAs induced by ActivinA. These data demonstrate that ActivinA boosts EV-mediated B-ALL crosstalk, improving leukemia survival in stress conditions.


Asunto(s)
Comunicación Celular , Supervivencia Celular , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Línea Celular Tumoral , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , MicroARNs/metabolismo , MicroARNs/genética
2.
Blood ; 143(14): 1399-1413, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38194688

RESUMEN

ABSTRACT: SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.


Asunto(s)
Sistema Hematopoyético , Enfermedades Mielodisplásicas-Mieloproliferativas , Trastornos Mieloproliferativos , Mielofibrosis Primaria , Animales , Ratones , Humanos , Mielofibrosis Primaria/genética , Trastornos Mieloproliferativos/genética , Mutación , Proteínas Portadoras/genética , Proteínas Nucleares/genética
3.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003483

RESUMEN

Cyclin-dependent kinase (CDK) 4/6 inhibitors have significantly improved progression-free survival in hormone-receptor-positive (HR+), human-epidermal-growth-factor-receptor-type-2-negative (HER2-) metastatic luminal breast cancer (mLBC). Several studies have shown that in patients with endocrine-sensitive or endocrine-resistant LBC, the addition of CDK4/6 inhibitors to endocrine therapy significantly prolongs progression-free survival. However, the percentage of patients who are unresponsive or refractory to these therapies is as high as 40%, and no reliable and reproducible biomarkers have been validated to select a priori responders or refractory patients. The selection of mutant clones in the target oncoprotein is the main cause of resistance. Other mechanisms such as oncogene amplification/overexpression or mutations in other pathways have been described in several models. In this study, we focused on palbociclib, a selective CDK4/6 inhibitor. We generated a human MCF-7 luminal breast cancer cell line that was able to survive and proliferate at different concentrations of palbociclib and also showed cross-resistance to abemaciclib. The resistant cell line was characterized via RNA sequencing and was found to strongly activate the epithelial-to-mesenchymal transition. Among the top deregulated genes, we found a dramatic downregulation of the CDK4 inhibitor CDKN2B and an upregulation of the TWIST1 transcription factor. TWIST1 was further validated as a target for the reversal of palbociclib resistance. This study provides new relevant information about the mechanisms of resistance to CDK4/6 inhibitors and suggests potential new markers for patients' follow-up care during treatment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación hacia Arriba , Quinasa 4 Dependiente de la Ciclina , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Supervivencia sin Progresión , Quinasa 6 Dependiente de la Ciclina , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
5.
J Cell Mol Med ; 27(20): 3053-3064, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37654003

RESUMEN

Mantle-cell lymphoma (MCL) is a B-cell non-Hodgkin Lymphoma (NHL) with a poor prognosis, at high risk of relapse after conventional treatment. MCL-associated tumour microenvironment (TME) is characterized by M2-like tumour-associated macrophages (TAMs), able to interact with cancer cells, providing tumour survival and resistance to immuno-chemotherapy. Likewise, monocyte-derived nurse-like cells (NLCs) present M2-like profile and provide proliferation signals to chronic lymphocytic leukaemia (CLL), a B-cell malignancy sharing with MCL some biological and phenotypic features. Antibodies against TAMs targeted CD47, a 'don't eat me' signal (DEMs) able to quench phagocytosis by TAMs within TME, with clinical effectiveness when combined with Rituximab in pretreated NHL. Recently, CD24 was found as valid DEMs in solid cancer. Since CD24 is expressed during B-cell differentiation, we investigated and identified consistent CD24 in MCL, CLL and primary human samples. Phagocytosis increased when M2-like macrophages were co-cultured with cancer cells, particularly in the case of paired DEMs blockade (i.e. anti-CD24 + anti-CD47) combined with Rituximab. Similarly, unstimulated CLL patients-derived NLCs provided increased phagocytosis when DEMs blockade occurred. Since high levels of CD24 were associated with worse survival in both MCL and CLL, anti-CD24-induced phagocytosis could be considered for future clinical use, particularly in association with other agents such as Rituximab.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células del Manto , Adulto , Humanos , Rituximab/farmacología , Rituximab/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células del Manto/tratamiento farmacológico , Antígeno CD47 , Recurrencia Local de Neoplasia , Fagocitosis , Microambiente Tumoral , Antígeno CD24
6.
Epilepsia ; 64(12): e222-e228, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37746765

RESUMEN

Missense variants of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels cause variable phenotypes, ranging from mild generalized epilepsy to developmental and epileptic encephalopathy (DEE). Although variants of HCN1 are an established cause of DEE, those of HCN2 have been reported in generalized epilepsies. Here we describe the first case of DEE caused by the novel de novo heterozygous missense variant c.1379G>A (p.G460D) of HCN2. Functional characterization in transfected HEK293 cells and neonatal rat cortical neurons revealed that HCN2 p.G460D currents were strongly reduced compared to wild-type, consistent with a dominant negative loss-of-function effect. Immunofluorescence staining showed that mutant channels are retained within the cell and do not reach the membrane. Moreover, mutant HCN2 also affect HCN1 channels, by reducing the Ih current expressed by the HCN1-HCN2 heteromers. Due to the persistence of frequent seizures despite pharmacological polytherapy, the patient was treated with a ketogenic diet, with a significant and long-lasting reduction of episodes. In vitro experiments conducted in a ketogenic environment demonstrated that the clinical improvement observed with this dietary regimen was not mediated by a direct action on HCN2 activity. These results expand the clinical spectrum related to HCN2 channelopathies, further broadening our understanding of the pathogenesis of DEE.


Asunto(s)
Dieta Cetogénica , Epilepsia Generalizada , Humanos , Ratas , Animales , Canales de Potasio/genética , Canales de Potasio/metabolismo , Células HEK293 , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Epilepsia Generalizada/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos
7.
J Clin Immunol ; 43(8): 2115-2125, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770806

RESUMEN

Biallelic KARS1 mutations cause KARS-related diseases, a rare syndromic condition encompassing central and peripheral nervous system impairment, heart and liver disease, and deafness. KARS1 encodes the t-RNA synthase of lysine, an aminoacyl-tRNA synthetase, involved in different physiological mechanisms (such as angiogenesis, post-translational modifications, translation initiation, autophagy and mitochondrial function). Although patients with immune-hematological abnormalities have been individually described, results have not been collectively discussed and functional studies investigating how KARS1 mutations affect B cells have not been performed. Here, we describe one patient with severe developmental delay, sensoneurinal deafness, acute disseminated encephalomyelitis, hypogammaglobulinemia and recurrent infections. Pathogenic biallelic KARS1 variants (Phe291Val/ Pro499Leu) were associated with impaired B cell metabolism (decreased mitochondrial numbers and activity). All published cases of KARS-related diseases were identified. The corresponding authors and researchers involved in the diagnosis of inborn errors of immunity or genetic syndromes were contacted to obtain up-to-date clinical and immunological information. Seventeen patients with KARS-related diseases were identified. Recurrent/severe infections (9/17) and B cell abnormalities (either B cell lymphopenia [3/9], hypogammaglobulinemia [either IgG, IgA or IgM; 6/15] or impaired vaccine responses [4/7]) were frequently reported. Immunoglobulin replacement therapy was given in five patients. Full immunological assessment is warranted in these patients, who may require detailed investigation and specific supportive treatment.


Asunto(s)
Agammaglobulinemia , Aminoacil-ARNt Sintetasas , Lisina-ARNt Ligasa , Enfermedades de Inmunodeficiencia Primaria , Humanos , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/genética , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Sordera/genética , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Mutación/genética , Enfermedades de Inmunodeficiencia Primaria/genética
9.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982938

RESUMEN

Triple-negative breast cancer (TNBC) is a very aggressive disease even in its early stages and is characterized by a severe prognosis. Neoadjuvant chemotherapy is one of the milestones of treatment, and paclitaxel (PTX) is among the most active drugs used in this setting. However, despite its efficacy, peripheral neuropathy occurs in approximately 20-25% of cases and represents the dose-limiting toxicity of this drug. New deliverable strategies to ameliorate drug delivery and reduce side effects are keenly awaited to improve patients' outcomes. Mesenchymal stromal cells (MSCs) have recently been demonstrated as promising drug delivery vectors for cancer treatment. The aim of the present preclinical study is to explore the possibility of a cell therapy approach based on the use of MSCs loaded with PTX to treat TNBC-affected patients. For this purpose, we in vitro evaluated the viability, migration and colony formation of two TNBC cell lines, namely, MDA-MB-231 and BT549, treated with MSC-PTX conditioned medium (MSC-CM PTX) in comparison with both CM of MSCs not loaded with PTX (CTRL) and free PTX. We observed stronger inhibitory effects on survival, migration and tumorigenicity for MSC-CM PTX than for CTRL and free PTX in TNBC cell lines. Further studies will provide more information about activity and potentially open the possibility of using this new drug delivery vector in the context of a clinical study.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias de la Mama Triple Negativas , Humanos , Paclitaxel/uso terapéutico , Neoplasias de la Mama Triple Negativas/metabolismo , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Línea Celular Tumoral , Células Madre Mesenquimatosas/metabolismo
10.
Virus Evol ; 8(1): veac026, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371557

RESUMEN

Many large national and transnational studies have been dedicated to the analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genome, most of which focused on missense and nonsense mutations. However, approximately 30 per cent of the SARS-CoV-2 variants are synonymous, therefore changing the target codon without affecting the corresponding protein sequence. By performing a large-scale analysis of sequencing data generated from almost 400,000 SARS-CoV-2 samples, we show that silent mutations increasing the similarity of viral codons to the human ones tend to fixate in the viral genome overtime. This indicates that SARS-CoV-2 codon usage is adapting to the human host, likely improving its effectiveness in using the human aminoacyl-tRNA set through the accumulation of deceitfully neutral silent mutations. One-Sentence Summary. Synonymous SARS-CoV-2 mutations related to the activity of different mutational processes may positively impact viral evolution by increasing its adaptation to the human codon usage.

11.
Cancers (Basel) ; 13(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34503232

RESUMEN

Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma characterized by expression of the oncogenic NPM/ALK fusion protein. When resistant or relapsed to front-line chemotherapy, ALK+ ALCL prognosis is very poor. In these patients, the ALK inhibitor crizotinib achieves high response rates, however 30-40% of them develop further resistance to crizotinib monotherapy, indicating that new therapeutic approaches are needed in this population. We here investigated the efficacy of upfront rational drug combinations to prevent the rise of resistant ALCL, in vitro and in vivo. Different combinations of crizotinib with CHOP chemotherapy, decitabine and trametinib, or with second-generation ALK inhibitors, were investigated. We found that in most cases combined treatments completely suppressed the emergence of resistant cells and were more effective than single drugs in the long-term control of lymphoma cells expansion, by inducing deeper inhibition of oncogenic signaling and higher rates of apoptosis. Combinations showed strong synergism in different ALK-dependent cell lines and better tumor growth inhibition in mice. We propose that drug combinations that include an ALK inhibitor should be considered for first-line treatments in ALK+ ALCL.

12.
Front Immunol ; 12: 673487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936120

RESUMEN

DOCK8 deficiency is a combined immunodeficiency due to biallelic variants in dedicator of cytokinesis 8 (DOCK8) gene. The disease has a wide clinical spectrum encompassing recurrent infections (candidiasis, viral and bacterial infections), virally driven malignancies and immune dysregulatory features, including autoimmune (cytopenia and vasculitis) as well as allergic disorders (eczema, asthma, and food allergy). Hypomorphic function and somatic reversion of DOCK8 has been reported to result in incomplete phenotype without IgE overproduction. Here we describe a case of DOCK8 deficiency in a 8-year-old Caucasian girl. The patient's disease was initially classified as autoimmune thrombocytopenia, which then evolved toward a combined immunodeficiency phenotype with recurrent infections, persistent EBV infection and lymphoproliferation. Two novel variants (one deletion and one premature stop codon) were characterized, resulting in markedly reduced, but not absent, DOCK8 expression. Somatic reversion of the DOCK8 deletion was identified in T cells. Hypomorphic function and somatic reversion were associated with restricted T cell repertoire, decreased STAT5 phosphorylation and impaired immune synapse functioning in T cells. Although the patient presented with incomplete phenotype (absence of markedly increase IgE and eosinophil count), sclerosing cholangitis was incidentally detected, thus indicating that hypomorphic function and somatic reversion of DOCK8 may delay disease progression but do not necessarily prevent from severe complications.


Asunto(s)
Colangitis Esclerosante/genética , Factores de Intercambio de Guanina Nucleótido/genética , Enfermedades de Inmunodeficiencia Primaria/genética , Niño , Femenino , Humanos , Mutación
13.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513852

RESUMEN

HFE-related hereditary hemochromatosis (HH) is characterized by marked phenotypic heterogeneity. Homozygosity for p.C282Y is a low penetrance genotype suggesting that the HFE-HH is a multifactorial disease resulting from a complex interaction involving a major gene defect, genetic background and environmental factors. We performed a targeted NGS-based gene panel to identify new candidate modifiers by using an extreme phenotype sampling study based on serum ferritin and iron removed/age ratio. We found an increased prevalence of the HIF1A p.Phe582Ser and p.Ala588Thr variants in patients with a severe iron and clinical phenotype. Accordingly, Huh-7 cells transfected with both variants showed significantly lower HAMP promoter activity by luciferase assay. The qRT-PCR assays showed a downregulation of hepcidin and an upregulation of the HIF1A target genes (VEGF, HMOX, FUR, TMPRSS6) in cells transfected with the HIF1A-P582S vector. We identified mutations in other genes (e.g., Serpina1) that might have some relevance in single cases in aggravating or mitigating disease manifestation. In conclusion, the present study identified HIF1A as a possible modifier of the HFE-HH phenotype cooperating with the genetic defect in downregulating hepcidin synthesis. In addition, this study highlights that an NGS-based approach could broaden our knowledge and help in characterizing the genetic complexity of HFE-HH patients with a severe phenotype expression.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteína de la Hemocromatosis/genética , Hemocromatosis/sangre , Subunidad alfa del Factor 1 Inducible por Hipoxia/sangre , Ferritinas/sangre , Furina/genética , Genotipo , Hemo-Oxigenasa 1/genética , Hemocromatosis/genética , Hepcidinas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas de la Membrana/genética , Mutación/genética , Serina Endopeptidasas/genética , Factor A de Crecimiento Endotelial Vascular/genética , alfa 1-Antitripsina/genética
14.
Blood ; 137(4): 493-499, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-32905580

RESUMEN

Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated 3 novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia. We identified homozygous or compound-heterozygous variants in the gene for folliculin interacting protein 1 (FNIP1), leading to loss of the FNIP1 protein. B-cell metabolism, including mitochondrial numbers and activity and phosphatidylinositol 3-kinase/AKT pathway, was impaired. These defects recapitulated the Fnip1-/- animal model. Moreover, we identified either uniparental disomy or copy-number variants (CNVs) in 2 patients, expanding the variant spectrum of this novel inborn error of immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic mechanisms and support the clinical utility of exome sequencing and CNV analysis in patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia, and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and potentially neutrophil activity.


Asunto(s)
Agammaglobulinemia/genética , Linfocitos B/patología , Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Síndromes de Inmunodeficiencia/genética , Linfopenia/genética , Adulto , Animales , Linfocitos B/metabolismo , Niño , Preescolar , Cromosomas Humanos Par 5/genética , Codón sin Sentido , Consanguinidad , Enfermedad de Crohn/genética , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Cardiopatías Congénitas/genética , Humanos , Infecciones/etiología , Mutación con Pérdida de Función , Masculino , Ratones , Neutropenia/genética , Linaje , Disomía Uniparental , Secuenciación del Exoma
15.
Nat Commun ; 11(1): 5938, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230096

RESUMEN

Recurrent somatic mutations in ETNK1 (Ethanolamine-Kinase-1) were identified in several myeloid malignancies and are responsible for a reduced enzymatic activity. Here, we demonstrate in primary leukemic cells and in cell lines that mutated ETNK1 causes a significant increase in mitochondrial activity, ROS production, and Histone H2AX phosphorylation, ultimately driving the increased accumulation of new mutations. We also show that phosphoethanolamine, the metabolic product of ETNK1, negatively controls mitochondrial activity through a direct competition with succinate at mitochondrial complex II. Hence, reduced intracellular phosphoethanolamine causes mitochondria hyperactivation, ROS production, and DNA damage. Treatment with phosphoethanolamine is able to counteract complex II hyperactivation and to restore a normal phenotype.


Asunto(s)
Etanolaminas/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Línea Celular , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/genética , Roturas del ADN/efectos de los fármacos , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Etanolaminas/metabolismo , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Mitocondrias/genética , Mitocondrias/patología , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Succínico/metabolismo , Tigeciclina/farmacología
16.
Stem Cells Transl Med ; 9(9): 1068-1084, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32496649

RESUMEN

The critical role of neuroinflammation in favoring and accelerating the pathogenic process in Alzheimer's disease (AD) increased the need to target the cerebral innate immune cells as a potential therapeutic strategy to slow down the disease progression. In this scenario, mesenchymal stem cells (MSCs) have risen considerable interest thanks to their immunomodulatory properties, which have been largely ascribed to the release of extracellular vesicles (EVs), namely exosomes and microvesicles. Indeed, the beneficial effects of MSC-EVs in regulating the inflammatory response have been reported in different AD mouse models, upon chronic intravenous or intracerebroventricular administration. In this study, we use the triple-transgenic 3xTg mice showing for the first time that the intranasal route of administration of EVs, derived from cytokine-preconditioned MSCs, was able to induce immunomodulatory and neuroprotective effects in AD. MSC-EVs reached the brain, where they dampened the activation of microglia cells and increased dendritic spine density. MSC-EVs polarized in vitro murine primary microglia toward an anti-inflammatory phenotype suggesting that the neuroprotective effects observed in transgenic mice could result from a positive modulation of the inflammatory status. The possibility to administer MSC-EVs through a noninvasive route and the demonstration of their anti-inflammatory efficacy might accelerate the chance of a translational exploitation of MSC-EVs in AD.


Asunto(s)
Enfermedad de Alzheimer/terapia , Vesículas Extracelulares/trasplante , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Neuroprotección , Administración Intranasal , Enfermedad de Alzheimer/patología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Proteínas de Unión al Calcio/metabolismo , Polaridad Celular , Células Cultivadas , Citocinas/metabolismo , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microglía/patología , Fenotipo
17.
Haematologica ; 104(9): 1789-1797, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30819912

RESUMEN

Despite the advent of tyrosine kinase inhibitors, a proportion of chronic myeloid leukemia patients in chronic phase fail to respond to imatinib or to second-generation inhibitors and progress to blast crisis. Until now, improvements in the understanding of the molecular mechanisms responsible for chronic myeloid leukemia transformation from chronic phase to the aggressive blast crisis remain limited. Here we present a large parallel sequencing analysis of 10 blast crisis samples and of the corresponding autologous chronic phase controls that reveals, for the first time, recurrent mutations affecting the ubiquitin-conjugating enzyme E2A gene (UBE2A, formerly RAD6A). Additional analyses on a cohort of 24 blast crisis, 41 chronic phase as well as 40 acute myeloid leukemia and 38 atypical chronic myeloid leukemia patients at onset confirmed that UBE2A mutations are specifically acquired during chronic myeloid leukemia progression, with a frequency of 16.7% in advanced phases. In vitro studies show that the mutations here described cause a decrease in UBE2A activity, leading to an impairment of myeloid differentiation in chronic myeloid leukemia cells.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Mutación , Enzimas Ubiquitina-Conjugadoras/genética , Crisis Blástica/genética , Diferenciación Celular , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Femenino , Células HEK293 , Humanos , Mesilato de Imatinib/uso terapéutico , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mieloide Aguda/patología , Masculino , Inhibidores de Proteínas Quinasas/farmacología , Análisis de Secuencia de ADN , Secuenciación del Exoma
18.
Cancers (Basel) ; 10(12)2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30545064

RESUMEN

Targeted therapy is an effective, rational, and safe approach to solid and hematological tumors treatment. Unfortunately, a significant fraction of patients treated with tyrosine kinase inhibitors (TKI) relapses mainly because of gene amplification, mutations, or other bypass mechanisms. Recently a growing number of papers showed how, in some cases, resistance due to oncogene overexpression may be associated with drug addiction: cells able to proliferate in the presence of high TKI doses become also TKI dependent, undergoing cellular stress, and apoptosis/death upon drug withdrawal. Notably, if a sub-cellular population survives TKI discontinuation it is also partially re-sensitized to the same drug. Thus, it is possible that a subset of patients relapsing upon TKI treatment may benefit from a discontinuous therapeutic schedule. We focused on two different hematologic malignancies, chronic myeloid leukemia (CML) and anaplastic large cell lymphoma (ALCL), both successfully treatable with TKIs. The two models utilized (LAMA and SUP-M2) differed in having oncogene overexpression as the sole cause of drug resistance (CML), or additionally carrying kinase domain mutations (ALCL). In both cases drug withdrawal caused a sudden overload of oncogenic signal, enhanced mitochondria activity, induced the release of a high amount of reactive oxygen species (ROS), and caused genotoxic stress and massive cell death. In LAMA cells (CML) we could rescue the cells from death by partially blocking downstream oncogenic signaling or lowering ROS detrimental effect by adding reduced glutathione.

19.
Cancer Res ; 78(24): 6866-6880, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30322862

RESUMEN

: Targeted therapy changed the standard of care in ALK-dependent tumors. However, resistance remains a major challenge. Lorlatinib is a third-generation ALK inhibitor that inhibits most ALK mutants resistant to current ALK inhibitors. In this study, we utilize lorlatinib-resistant anaplastic large cell lymphoma (ALCL), non-small cell lung cancer (NSCLC), and neuroblastoma cell lines in vitro and in vivo to investigate the acquisition of resistance and its underlying mechanisms. ALCL cells acquired compound ALK mutations G1202R/G1269A and C1156F/L1198F in vitro at high drug concentrations. ALCL xenografts selected in vivo showed recurrent N1178H (5/10 mice) and G1269A (4/10 mice) mutations. Interestingly, intracellular localization of NPM/ALKN1178H skewed toward the cytoplasm in human cells, possibly mimicking overexpression. RNA sequencing of resistant cells showed significant alteration of PI3K/AKT and RAS/MAPK pathways. Functional validation by small-molecule inhibitors confirmed the involvement of these pathways in resistance to lorlatinib. NSCLC cells exposed in vitro to lorlatinib acquired hyperactivation of EGFR, which was blocked by erlotinib to restore sensitivity to lorlatinib. In neuroblastoma, whole-exome sequencing and proteomic profiling of lorlatinib-resistant cells revealed a truncating NF1 mutation and hyperactivation of EGFR and ErbB4. These data provide an extensive characterization of resistance mechanisms that may arise in different ALK-positive cancers following lorlatinib treatment. SIGNIFICANCE: High-throughput genomic, transcriptomic, and proteomic profiling reveals various mechanisms by which multiple tumor types acquire resistance to the third-generation ALK inhibitor lorlatinib.


Asunto(s)
Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Lactamas Macrocíclicas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Aminopiridinas , Animales , Antineoplásicos/farmacología , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Lactamas , Ratones , Microscopía Fluorescente , Mutación , Trasplante de Neoplasias , Neuroblastoma/tratamiento farmacológico , Fosforilación , Pirazoles , Análisis de Secuencia de ARN
20.
Nat Commun ; 9(1): 2192, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875417

RESUMEN

SETBP1 variants occur as somatic mutations in several hematological malignancies such as atypical chronic myeloid leukemia and as de novo germline mutations in the Schinzel-Giedion syndrome. Here we show that SETBP1 binds to gDNA in AT-rich promoter regions, causing activation of gene expression through recruitment of a HCF1/KMT2A/PHF8 epigenetic complex. Deletion of two AT-hooks abrogates the binding of SETBP1 to gDNA and impairs target gene upregulation. Genes controlled by SETBP1 such as MECOM are significantly upregulated in leukemias containing SETBP1 mutations. Gene ontology analysis of deregulated SETBP1 target genes indicates that they are also key controllers of visceral organ development and brain morphogenesis. In line with these findings, in utero brain electroporation of mutated SETBP1 causes impairment of mouse neurogenesis with a profound delay in neuronal migration. In summary, this work unveils a SETBP1 function that directly affects gene transcription and clarifies the mechanism operating in myeloid malignancies and in the Schinzel-Giedion syndrome caused by SETBP1 mutations.


Asunto(s)
Proteínas Portadoras/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Mutación , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Anomalías Múltiples/genética , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Anomalías Craneofaciales/genética , Ontología de Genes , Células HEK293 , Deformidades Congénitas de la Mano/genética , Humanos , Discapacidad Intelectual/genética , Leucemia/genética , Leucemia/patología , Ratones , Uñas Malformadas/genética , Neurogénesis/genética , Proteínas Nucleares/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...