Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686696

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is among the most common cancer worldwide, accounting for hundreds thousands deaths annually. Unfortunately, most patients are diagnosed in an advanced stage and only a percentage respond favorably to therapies. To help fill this gap, we hereby propose a retrospective in silico study to shed light on gene-miRNA interactions driving the development of HNSCC. Moreover, to identify topological biomarkers as a source for designing new drugs. To achieve this, gene and miRNA profiles from patients and controls are holistically reevaluated using protein-protein interaction (PPI) and bipartite miRNA-target networks. Cytoskeletal remodeling, extracellular matrix (ECM), immune system, proteolysis, and energy metabolism have emerged as major functional modules involved in the pathogenesis of HNSCC. Of note, the landscape of our findings depicts a concerted molecular action in activating genes promoting cell cycle and proliferation, and inactivating those suppressive. In this scenario, genes, including VEGFA, EMP1, PPL, KRAS, MET, TP53, MMPs and HOXs, and miRNAs, including mir-6728 and mir-99a, emerge as key players in the molecular interactions driving HNSCC tumorigenesis. Despite the heterogeneity characterizing these HNSCC subtypes, and the limitations of a study pointing to relationships that could be context dependent, the overlap with previously published studies is encouraging. Hence, it supports further investigation for key molecules, both those already and not correlated to HNSCC.

2.
Biology (Basel) ; 12(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37759595

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 health emergency, affecting and killing millions of people worldwide. Following SARS-CoV-2 infection, COVID-19 patients show a spectrum of symptoms ranging from asymptomatic to very severe manifestations. In particular, bronchial and pulmonary cells, involved at the initial stage, trigger a hyper-inflammation phase, damaging a wide range of organs, including the heart, brain, liver, intestine and kidney. Due to the urgent need for solutions to limit the virus' spread, most efforts were initially devoted to mapping outbreak trajectories and variant emergence, as well as to the rapid search for effective therapeutic strategies. Samples collected from hospitalized or dead COVID-19 patients from the early stages of pandemic have been analyzed over time, and to date they still represent an invaluable source of information to shed light on the molecular mechanisms underlying the organ/tissue damage, the knowledge of which could offer new opportunities for diagnostics and therapeutic designs. For these purposes, in combination with clinical data, omics profiles and network models play a key role providing a holistic view of the pathways, processes and functions most affected by viral infection. In fact, in addition to epidemiological purposes, networks are being increasingly adopted for the integration of multiomics data, and recently their use has expanded to the identification of drug targets or the repositioning of existing drugs. These topics will be covered here by exploring the landscape of SARS-CoV-2 survey-based studies using systems biology approaches derived from omics data, paying particular attention to those that have considered samples of human origin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...