Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 174: 107891, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963155

RESUMEN

Anthropogenic mercury (Hg) emissions have increased significantly since the Industrial Revolution, resulting in severe health impacts to humans. The consumptions of fish and rice were primary human methylmercury (MeHg) exposure pathways in Asia. However, the lifecycle from anthropogenic Hg emissions to human MeHg exposure is not fully understood. In this study, a recently developed approach, termed MeHg Compound-Specific Isotope Analysis (CSIA), was employed to track lifecycle of Hg in four typical Hg-emission areas. Distinct Δ199Hg of MeHg and inorganic Hg (IHg) were observed among rice, fish and hair. The Δ199Hg of MeHg averaged at 0.07 ± 0.15 ‰, 0.80 ± 0.55 ‰ and 0.43 ± 0.29 ‰ in rice, fish and hair, respectively, while those of IHg averaged at - 0.08 ± 0.24 ‰, 0.85 ± 0.43 ‰ and - 0.28 ± 0.68 ‰. In paddy ecosystem, Δ199Hg of MeHg in rice showed slightly positive shifts (∼0.2 ‰) from those of IHg, and comparable Δ199Hg of IHg between rice grain and raw/processed materials (coal, Hg ore, gold ore and sphalerite) were observed. Simultaneously, it was proved that IHg in fish muscle was partially derived from in vivo demethylation of MeHg. By a binary model, we estimated the relative contributions of rice consumption to human MeHg exposure to be 84 ± 14 %, 58 ± 26 %, 52 ± 20 % and 34 ± 15 % on average in Hg mining area, gold mining area, zinc smelting area and coal-fired power plant area, respectively, and positive shifts of δ202HgMeHg from fish/rice to human hair occurred during human metabolic processes. Therefore, the CSIA approach can be an effective tool for tracking Hg biogeochemical cycle and human exposure, from which new scientific knowledge can be generated to support Hg pollution control policies and to protect human health.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Animales , Humanos , Mercurio/análisis , Ecosistema , Monitoreo del Ambiente , Compuestos de Metilmercurio/análisis , Isótopos/análisis , Oryza/metabolismo , Peces/metabolismo , Carbón Mineral/análisis
2.
Environ Sci Technol ; 55(18): 12493-12503, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34468125

RESUMEN

Monomethylmercury (MMHg) exposure can induce adverse neurodevelopmental effects in humans and is a global environmental health concern. Human exposure to MMHg occurs predominately through the consumption of fishery foods and rice in Asia, but it is challenging to quantify these two exposure sources. Here, we innovatively utilized MMHg compound-specific stable isotope analyses (MMHg-CSIA) of the hair to quantify the human MMHg sources in coastal and inland areas, where fishery foods and rice are routinely consumed. Our data showed that the fishery foods and rice end members had distinct Δ199HgMMHg values in both coastal and inland areas. The Δ199HgMMHg values of the human hair were comparable to those of fishery foods but not those of rice. Positive shifts in the δ202HgMMHg values of the hair from diet were observed in the study areas. Additionally, significant differences in δ202Hg versus Δ199Hg were detected between MMHg and inorganic Hg (IHg) in the human hair but not in fishery foods and rice. A binary mixing model was developed to estimate the human MMHg exposures from fishery foods and rice using Δ199HgMMHg data. The model results suggested that human MMHg exposures were dominated (>80%) by fishery food consumption and were less affected by rice consumption in both the coastal and inland areas. This study demonstrated that the MMHg-CSIA method can provide unique information for tracking human MMHg exposure sources by excluding the deviations from dietary surveys, individual MMHg absorption/demethylation efficiencies, and the confounding effects of IHg.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Monitoreo del Ambiente , Cabello/química , Humanos , Isótopos , Mercurio/análisis
3.
Sci Rep ; 11(1): 17640, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34480050

RESUMEN

One major health issue is the microbial and chemical contamination of natural freshwater, particularly in Latin American countries, such as Ecuador, where it is still lacking wastewater treatment plants. This study analyzed the water quality in twelve rivers of Ecuador (Coastal, Andean, and Amazonian regions). All rivers showed levels of E. coli and total coliforms above the maximum limit according to International and Ecuadorian legislations. The most polluted rivers were Zamora, Esmeraldas and Machángara. Also, E. coli pathotypes were found in six rivers. Several physicochemical and metal parameters were detected in high levels, such as CODTOTAL (in eight rivers), TSS (in six rivers), TS (in two rivers), Al (in nine rivers), Zn (in eight rivers), Pb (in three rivers), Cu (in three rivers), Fe (in two rivers), and Mn (in Machángara River). Our results agree with other studies in Latin America (such as Colombia, Brazil, and Peru) reporting similar contamination in water resources used for agriculture, livestock, and human consumption. Overall, Guayas, Guayllabamba, and Machángara Rivers showed the highest levels of physicochemical parameters (such as CODTOTAL and TSS) and metal concentrations (such as copper, zinc, aluminum, iron, and manganese). Further studies should evaluate contamination sources and public health impact.

4.
Environ Sci Pollut Res Int ; 28(43): 60609-60621, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34159470

RESUMEN

The aim of the study was to determine if gold-mining activities could impact the mercury (Hg) concentrations and isotopic signatures in freshwater fish consumed by riparian people in French Guiana. Total Hg, MeHg concentrations, and Hg stable isotopes ratios were analyzed in fish muscles from different species belonging to three feeding patterns (herbivorous, periphytophagous, and piscivorous). We compared tributaries impacted by gold-mining activities (Camopi, CR) with a pristine area upstream (Trois-Sauts, TS), along the Oyapock River. We measured δ15N and δ 13C to examine whether Hg patterns are due to differences in trophic level. Differences in δ 15N and δ 13C values between both studied sites were only observed for periphytophagous fish, due to difference of CN baselines, with enriched values at TS. Total Hg concentrations and Hg stable isotope signatures showed that Hg accumulated in fish from both areas has undergone different biogeochemical processes. Δ199Hg variation in fish (-0.5 to 0.2‰) was higher than the ecosystem baseline defined by a Δ199Hg of -0.66‰ in sediments, and suggested limited aqueous photochemical MeHg degradation. Photochemistry-corrected δ202Hg in fish was 0.7‰ higher than the baseline, consistent with biophysical and chemical isotope fractionation in the aquatic environment. While THg concentrations in periphytophagous fish were higher in the gold-mining area, disturbed by inputs of suspended particles, than in TS, the ensemble of Hg isotope shifts in fish is affected by the difference of biotic (methylation/demethylation) and abiotic (photochemistry) processes between both areas and did therefore not allow to resolve the contribution of gold-mining-related liquid Hg(0) in fish tissues. Mercury isotopes of MeHg in fish and lower trophic level organisms can be complementary to light stable isotope tracers.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Peces , Guyana Francesa , Oro , Humanos , Mercurio/análisis , Isótopos de Mercurio , Minería , Contaminantes Químicos del Agua/análisis
5.
Environ Geochem Health ; 43(11): 4741-4757, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33974199

RESUMEN

In French Guiana were detected high lead (Pb) levels in blood of Amerindian people. Lead exposure is a serious hazard that can affect the cognitive and behavior development. People can be exposed to Pb through occupational and environmental sources. Fingerprinting based on stable Pb isotopes in environmental media is often used to trace natural and anthropogenic sources but is rarely paired with blood data. The objective of this study was to determine the main factors associated with high Blood Lead Levels (BLL). Soil, manioc tubers, food bowls, beverages, wild games, lead pellets and children blood were sampled in small villages along the Oyapock River. children BLL ranged between 5.7 and 35 µg dL-1, all exceeding 5 µg dL-1, the reference value proposed in epidemiologic studies for lead poisoning. Among the different dietary sources, manioc tubers and large game contained elevated Pb concentrations while manioc-based dishes were diluted. The isotopes ratios (207Pb/206Pb and 208Pb/206Pb) of children blood overlapped these of lead shots and meals. These first results confirm for the first time, the diary consumption of manioc-based food as the main contributor to Amerindian children's BLL in French Guiana, but don't exclude the occasional exposure to lead bullets by hunting activities. This is a specific health concern, since previous studies have shown that these same villagers present high levels of mercury (Hg). These communities are indeed subject to a double exposure to neurotoxic metals, Hg and Pb, both through their diet. The farming activity is based on manioc growing, and explaining that this ancestral practice can induce serious health risks for the child's development may seriously affect their food balance and cultural cohesion.


Asunto(s)
Intoxicación por Plomo , Mercurio , Niño , Exposición a Riesgos Ambientales/análisis , Guyana Francesa , Humanos , Plomo/análisis
6.
Ecotoxicol Environ Saf ; 215: 112122, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33725489

RESUMEN

The human ingestion of mercury (Hg) from sea food is of big concern worldwide due to adverse health effects, and more specifically if shark consumption constitutes a regular part of the human diet. In this study, the total mercury (THg) concentration in muscle tissue were determined in six sympatric shark species found in a fishing vessel seized in the Galapagos Marine Reserve in 2017. The THg concentrations in shark muscle samples (n = 73) varied from 0.73 mg kg-1 in bigeye thresher sharks (Alopias superciliosus) to 8.29 mg kg-1 in silky sharks (Carcharhinus falciformis). A typical pattern of Hg bioaccumulation was observed for all shark species, with significant correlation between THg concentration and shark size for bigeye thresher sharks, pelagic thresher sharks (Alopias pelagicus) and silky sharks. Regarding human health concerns, the THg mean concentration exceeded the maximum weekly intake fish serving in all the studied species. Mass-Dependent Fractionation (MDF, δ202Hg values) and Mass-Independent Fractionation (MIF, Δ199Hg values) of Hg in whitetip sharks (Carcharhinus longimanus) and silky sharks, ranged from 0.70‰ to 1.08‰, and from 1.97‰ to 2.89‰, respectively. These high values suggest that both species are feeding in the epipelagic zone (i.e. upper 200 m of the water column). While, blue sharks (Prionace glauca), scalloped hammerhead sharks (Shyrna lewini) and thresher sharks were characterized by lower Δ199Hg and δ202Hg values, indicating that these species may focus their foraging behavior on prey of mesopelagic zone (i.e. between 200 and 1000 m depth). In conclusion, the determination of THg concentration provides straight-forward evidence of the human health risks associated with shark consumption, while mercury isotopic compositions constitute a powerful tool to trace the foraging strategies of these marine predators. CAPSULE: A double approach combining Hg concentrations with stable isotopes ratios allowed to assess ontogeny in common shark species in the area of the Galapagos Marine Reserve and the human health risks concern associated to their consumption.


Asunto(s)
Mercurio/metabolismo , Tiburones/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Bioacumulación , Monitoreo del Ambiente/métodos , Conducta Alimentaria , Humanos , Isótopos , Mercurio/análisis , Isótopos de Mercurio , Músculos/química , Alimentos Marinos , Tiburones/fisiología , Contaminantes Químicos del Agua/análisis
7.
Environ Int ; 147: 106336, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33360410

RESUMEN

The pathways of human mercury (Hg) exposure are complex and accurate understanding of relative contributions from different pathways are crucial for risk assessment and risk control. In this study, we determined total Hg concentration and Hg isotopic composition of human urine, dietary components, and inhaled air in the Wanshan Hg mining area (MA), Guiyang urban area (UA), and Changshun background area (BA) to understand Hg exposure sources and metabolic processes in human body. At the three studied sites, total gaseous mercury (TGM) showed negative δ202Hg (-3.11‰ to + 1.12‰) and near-zero Δ199Hg (-0.16‰ to + 0.13‰), which were isotopically distinguishable from Hg isotope values of urine (δ202Hg: -4.02‰ to - 0.84‰; Δ199Hg: -0.14‰ to 0.64‰). We observed an offset of -1.01‰ to -1.6‰ in δ202Hg between TGM and urine samples, and an offset of -1.01‰ to 0.80‰ in δ202Hg between rice and urine samples, suggesting that lighter isotopes are more easily accumulated in the kidneys and excreted by urine. We proposed that the high positive Δ199Hg in urine samples of UA was derived from fish consumption. The results of a binary mixing model based on Δ199Hg were compared with those from a classic dietary model. The results from the MIF binary model showed that fish consumption accounted for 22% of urine Hg in the families at UA, whereas fish consumption contributed limited Hg to MA and BA. This study highlighted that Hg isotopes can be a useful tracer in understanding the sources and fates of Hg in human bodies.


Asunto(s)
Cuerpo Humano , Mercurio , Animales , China , Monitoreo del Ambiente , Humanos , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis
8.
Environ Res ; 192: 110241, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32980301

RESUMEN

Since cacao beans accumulate Cd in high levels and restrictions have been imposed on safe levels of chocolate consumption, concern about whether or not cacao trees store other toxic elements seems to be inevitable. Following a previous study in Ecuador examining Cd content in five cacao varieties collected in pristine areas and in places impacted by oil activities, we present here the concentrations of 11 trace elements (TEs) (As, Ba, Co, Cu, Cr, Mo, Mn, Ni, Pb, V and Zn) in soils, cacao tissues (leaves, pod husks, beans) and cocoa liquor (CL). Several TEs showed concentrations in topsoils above the Ecuadorian limits, and may have a mixed natural and anthropogenic origin. Ba and Mo concentrations in cacao tissues are slightly higher than those reported in other surveys, but this was not the case for toxic elements (As and Pb). TE contents are lower in CL, than in beans, except for Pb and Co, but no risk was identified for human health. Compared with control areas, Enrichment Factors were below 2 in impacted areas, except for Ba. Transfer factors (from soils to cacao) indicated that cacao does not accumulate TEs. A positive correlation was found between Cd and Zn in topsoils and cacao tissues for the CCN-51 variety, and between Cd and Ni for the Nacional variety. Identifying patterns of TE distribution and potential interactions in order to explain plant internal mechanisms, which is also dependent on the cacao variety, is a difficult task and needs further research.


Asunto(s)
Cacao , Metales Pesados , Contaminantes del Suelo , Oligoelementos , Cadmio/análisis , Ecuador , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Oligoelementos/análisis
9.
Environ Res ; 196: 110362, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33169691

RESUMEN

Recent studies have shown that rice consumption can be the major pathway for human methylmercury (MeHg) exposure in inland China. However, few studies have considered the susceptible population of school children's exposure through rice ingestion. In this study, monthly variations in total Hg (THg)/MeHg concentrations in rice, fish, hair, and urine samples were studied to evaluate the Hg (both THg and MeHg) exposure in Guiyang, a typical industrial area with high anthropogenic emission of Hg. A total of 17 primary school (school A) students, 29 middle school (school B) students, and 46 guardians participated in this study for one year. Hair THg, hair MeHg, and urine THg concentrations ranged from 355-413 ng g-1, 213-236 ng g-1, and 469-518 ng g-1 Creatinine (ng·g-1 Cr), respectively, and no significant differences were observed between different genders and age groups. Hair and urine Hg concentrations showed slightly higher values in the cold season (October to February) than the hot season (March to September), but without significant difference. High monthly variability of individual hair and urine Hg concentrations suggested that long-term study could effectively decrease the uncertainty. The school students showed significantly higher urine THg concentrations than adults due to children's unique physiological structure and behaviors. Probable daily intake (PDI) of MeHg via rice and fish ingestion averaged at 0.0091, 0.0090, and 0.0079 µg kg-1 d-1 for school A students, school B students, and their guardians, respectively, which means that 86%, 84%, and 87% of the PDI were originated from rice ingestion, respectively. Therefore, more attention should be paid to children as a susceptible population. The results indicated low risk of Hg exposure via rice and fish consumption for urban residents in a Chinese industrial city.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Adulto , Animales , Niño , China , Ciudades , Monitoreo del Ambiente , Femenino , Humanos , Masculino , Mercurio/análisis , Instituciones Académicas
10.
Artículo en Inglés | MEDLINE | ID: mdl-32674286

RESUMEN

Contamination of natural water sources is one of the main health problems worldwide, which could be caused by chemicals, metals, or microbial agents. This study aimed to analyze the quality of 18 rivers located in Quito, the capital province of Pichincha, Ecuador, through physico-chemical and microbial parameters. The E. coli and total coliforms assessments were performed by a counting procedure in growth media. Polymerase chain reaction (PCR) was realized to detect several microbial genera, as well as Candida albicans, two parasites (Cryptosporidium and Giardia spp.) and E. coli pathotypes: enterohemorrhagic E. coli (EHEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC) and enteropathogenic E. coli (EPEC). Additionally, physico-chemical parameters and major and trace metals were analyzed in each surface water sample. Our results demonstrated that most of the rivers analyzed do not comply with the microbial, physico-chemical, and metal requirements established by the Ecuadorian legislation. In terms of microbial pollution, the most polluted rivers were Monjas, Machángara, Pisque, and Pita Rivers. Furthermore, three out of four analyzed E. coli pathotypes (EIEC, EHEC, and EAEC) were detected in certain rivers, specifically: Monjas River showed the presence of EIEC and EHEC; in the Machángara River, EAEC and EIEC were detected; and finally, EIEC was present in the Guayllabamba River. Several physico-chemical parameters, such as pH, CODtotal, and TSS values, were higher than the Ecuadorian guidelines in 11, 28, and 28% of the rivers, respectively. Regarding heavy metals, Zn, Cu, Ni, Pb, Cd, and Mn surpassed the established values in 94, 89, 61, 22, 22, and 17% of the rivers, respectively. Machangara River was the only one that registered higher Cr concentrations than the national guidelines. The values of Al and Fe were above the recommended values in 83 and 72% of the rivers. Overall, based on the physical-chemical and microbiological parameters the most contaminated rivers were Machángara and Monjas. This study revealed severe contaminations in Ecuadorean Rivers; further studies should evaluate the sources of contamination and their impact on public health.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Metales Pesados , Contaminantes Químicos del Agua , Animales , Ecuador , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Ríos , Contaminantes Químicos del Agua/análisis
11.
Environ Sci Pollut Res Int ; 27(4): 3746-3755, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31044382

RESUMEN

Each year, 5 to 10 million tons of plastic waste is dumped in the oceans via freshwaters and accumulated in huge oceanic gyres. Under the effect of several abiotic factors, macro plastic wastes (or plastic wastes with macro sizes) are fractionated into microplastics (MP) and finally reach the nanometric size (nanoplastic NP). To reveal potential toxic impacts of these NPs, two microalgae, Scenedemus subspicatus (freshwater green algae), and Thalassiosira weissiflogii (marine diatom) were exposed for up to 48 h at 1, 10, 100, 1000, and 10,000 µg/L to reference polyethylene NPs (PER) or NPs made from polyethylene collected in the North Atlantic gyre (PEN, 7th continent expedition in 2015). Freshwater filter-feeding bivalves, Corbicula fluminea, were exposed to 1000 µg/L of PER and PEN for 48 h to study a possible modification of their filtration or digestion capacity. The results show that PER and PEN do not influence the cell growth of T. weissiflogii, but the PEN exposure causes growth inhibition of S. subspicatus for all exposure concentrations tested. This growth inhibition is enhanced for a higher concentration of PER or PEN (10,000 µg/L) in S. subspicatus. The marine diatom T. weissiflogii appears to be less impacted by plastic pollution than the green algae S. subspicatus for the exposure time. Exposure to NPs does not lead to any alteration of bivalve filtration; however, fecal and pseudo-fecal production increased after PEN exposure, suggesting the implementation of rejection mechanisms for inedible particles.


Asunto(s)
Microalgas , Polietileno/química , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Océano Atlántico , Microalgas/química , Plásticos , Polietileno/análisis
12.
Sci Total Environ ; 690: 1203-1217, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31470483

RESUMEN

The unregulated oil exploitation in the Northern Ecuadorian Amazon Region (NEAR), mainly from 1964 to the 90's, led to toxic compounds largely released into the environment. A large majority of people living in the Amazon region have no access to drinking water distribution systems and collects water from rain, wells or small streams. The concentrations of major ions, trace elements, PAHs (polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, xylenes) were analyzed in different water sources to evaluate the impacts of oil extraction and refining. Samples were taken from the NEAR and around the main refinery of the country (Esmeraldas Oil Refinery/State Oil Company of Ecuador) and were compared with domestic waters from the Southern region, not affected by petroleum activities. In most of the samples, microbiological analysis revealed a high level of coliforms representing significant health risks. All measured chemical compounds in waters were in line with national and international guidelines, except for manganese, zinc and aluminum. In several deep-water wells, close to oil camps, toluene concentrations were higher than the natural background while PAHs concentrations never exceeded individually 2 ng·L-1. Water ingestion represented 99% of the total exposure pathways for carcinogenic and non-carcinogenic elements (mainly zinc) in adults and children, while 20% to 49% of the Total Cancer Risk was caused by arsenic concentrations. The health index (HI) indicates acceptable chronic effects for domestic use according the US-EPA thresholds. Nevertheless, these limits do not consider the cocktail effects of metallic and organic compounds. Furthermore, they do not include the social determinants of human exposure, such as socio-economic living conditions or vulnerability. Most (72%) of interviewed families knew sanitary risks but a discrepancy was observed between knowledge and action: religious beliefs, cultural patterns, information sources, experience and emotions play an important role front to exposure.


Asunto(s)
Agua Potable/química , Exposición a Riesgos Ambientales/análisis , Contaminación por Petróleo/estadística & datos numéricos , Percepción Social , Contaminación del Agua/estadística & datos numéricos , Ecuador , Exposición a Riesgos Ambientales/estadística & datos numéricos , Monitoreo del Ambiente , Humanos , Compuestos Orgánicos , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos , Ríos , Contaminantes Químicos del Agua , Contaminación del Agua/análisis , Calidad del Agua
13.
RSC Adv ; 9(58): 34011-34022, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35528875

RESUMEN

The often high Cd concentrations of cacao beans are a serious concern for producers in Latin America due to the implementation of stricter Cd limits for cocoa products by the European Union in 2019. This is the first investigation to employ coupled Cd isotope and concentration measurements to study soil - cacao systems. Analyses were carried out for 29 samples of soils, soil amendments and cacao tree organs from organic farms in Ecuador that harvest three distinct cacao cultivars. The majority of soils from 0-80 cm depth have very similar δ114/110Cd of about -0.1‰ to 0‰. Two 0-5 cm topsoils, however, have high Cd concentrations coupled with heavy Cd isotope compositions of δ114/110Cd ≈ 0.2%, possibly indicating Cd additions from the tree litter used as organic fertilizer. Whilst cacao leaves, pods and beans are ubiquitously enriched in Cd relative to soils there are distinct Cd isotope signatures. The leaves and pods are isotopically heavier than the soils, with similar Δ114/110Cdleaf-soil values of 0.22 ± 0.07‰ to 0.41 ± 0.09‰. In contrast, the data reveal differences in Δ114/110Cdbean-leaf that may be linked to distinct cacao cultivars. In detail, Δ114/110Cdbean-leaf values of -0.34‰ to -0.40‰ were obtained for Nacional cacao from two farms, whilst CCN-51 hybrid cacao from a third farm showed no fractionation within error (-0.08 ± 0.13‰). As such, further work to investigate whether Cd isotopes are indeed useful for tracing sources of Cd enrichments in soils and to inform genetic efforts to reduce the Cd burden of cocoa is indicated.

14.
Environ Pollut ; 245: 371-379, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30448507

RESUMEN

Plastic pollution in the marine environment poses threats to wildlife and habitats through varied mechanisms, among which are the transport and transfer to the food web of hazardous substances. Still, very little is known about the metal content of plastic debris and about sorption/desorption processes, especially with respect to weathering. In this study, plastic debris collected from the North Atlantic subtropical gyre was analyzed for trace metals; as a comparison, new packaging materials were also analyzed. Both the new items and plastic debris showed very scattered concentrations. The new items contained significant amounts of trace metals introduced as additives, but globally, metal concentrations were higher in the plastic debris. The results provide evidence that enhanced metal concentrations increase with the plastic state of oxidation for some elements, such as As, Ti, Ni, and Cd. Transmission electron microscopy showed the presence of mineral particles on the surface of the plastic debris. This work demonstrates that marine plastic debris carries complex mixtures of heavy metals. Such materials not only behave as a source of metals resulting from intrinsic plastic additives but also are able to concentrate metals from ocean water as mineral nanoparticles or adsorbed species.


Asunto(s)
Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Plásticos/química , Oligoelementos/análisis , Residuos/análisis , Contaminantes Químicos del Agua/análisis , Océano Atlántico , Ecosistema , Expediciones , Clima Tropical , Tiempo (Meteorología)
15.
Chemosphere ; 219: 684-694, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30557725

RESUMEN

In some locations, artisanal and small-scale gold-mining (ASGM) represents a significant source of anthropogenic Hg to freshwater environments. The Hg released from ASGM can contaminate aquatic fauna and pose health risks to downstream populations. Total Hg (THg) concentrations, speciation, and isotopic compositions were analyzed in water, suspended particulate matter, soil, and bottom sediment samples from pristine areas and in places of active and legacy gold mining along the Oyapock River (French Guiana) and its tributaries. Mass-independent fractionation (MIF) of even Hg isotopes in top soils (Δ200Hg = -0.06 ±â€¯0.02‰, n = 10) implied the uptake of gaseous Hg(0) by plants, rather than wet deposition, as the primary Hg source. Odd isotope MIF was lower in deep soils (Δ199Hg = -0.75 ±â€¯0.03‰, n = 7) than in top soils (Δ199Hg = -0.55 ±â€¯0.15‰, n = 3). This variation could be attributed to differences between the isotopic signatures of modern and pre-industrial atmospheric Hg. Combining a Hg-isotope binary mixing model with a multiple linear regression based on physico-chemical parameters measured in the sediment samples, we determined that active mined creek sediments are contaminated by ASGM activities, with up to 78% of THg being anthropogenic. Of this anthropogenic Hg, more than half (66-74%) originates from liquid Hg(0) that is released during ASGM. The remaining anthropogenic Hg comes from the ASGM-driven erosion of Hg-rich soils into the river. The isotope signatures of anthropogenic Hg in bottom sediments were no longer traceable in formerly mined rivers and creeks.


Asunto(s)
Monitoreo del Ambiente/métodos , Oro , Isótopos de Mercurio/análisis , Minería , Ríos/química , Sedimentos Geológicos/química , Mercurio/análisis , Suelo/química , Contaminantes Químicos del Agua/análisis
16.
J Environ Sci (China) ; 68: 24-40, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29908742

RESUMEN

Seasonal variability of dissolved and particulate methylmercury (F-MeHg, P-MeHg) concentrations was studied in the waters of the Amazon River and its associated Curuai floodplain during hydrological year 2005-2006, to understand the MeHg exchanges between these aquatic systems. In the oxic white water lakes, with neutral pH, high F-MeHg and P-MeHg concentrations were measured during the rising water stage (0.70±0.37pmol/L, n=26) and flood peak (14.19±9.32pmol/g, n=7) respectively, when the Amazon River water discharge into the lakes was at its maximum. The lowest mean values were reported during the dry season (0.18±0.07pmol/L F-MeHg, n=10 and 1.35±1.24pmol/g P-MeHg, n=8), when water and suspended sediments were outflowing from the lakes into the River. In these lakes, the MeHg concentrations were associated to the aluminium and organic carbon/nitrogen changes. In the black water lakes, with acidic pH and reducing conditions, elevated MeHg concentrations were recorded (0.58±0.32pmol/L F-MeHg, n=16 and 19.82±15.13pmol/g P-MeHg, n=6), and correlated with the organic carbon and manganese concentrations. Elevated values of MeHg partition coefficient (4.87

Asunto(s)
Monitoreo del Ambiente , Lagos/química , Compuestos de Metilmercurio/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Brasil
17.
Environ Sci Technol ; 52(9): 5407-5416, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29649864

RESUMEN

Mercury (Hg) isotopic compositions in hair and dietary sources from Wanshan (WS) Hg mining area, Guiyang (GY) urban area, and Changshun (CS) rural area were determined to identify the major Hg exposure sources of local residents. Rice and vegetables displayed low δ202Hg and small negative to zero Δ199Hg, and are isotopically distinguishable from fish which showed relatively higher δ202Hg and positive Δ199Hg. Distinct isotopic signatures were also observed for human hair from the three areas. Shifts of 2 to 3‰ in δ202Hg between hair and dietary sources confirmed mass dependent fractionation of Hg isotopes occurs during metabolic processes. Near zero Δ199Hg of hair from WS and CS suggested rice is the major exposure source. Positive Δ199Hg of hair from GY was likely caused by consumption of fish. A binary mixing model based on Δ199Hg showed that rice and fish consumption accounted for 59% and 41% of dietary Hg source for GY residents, respectively, whereas rice is the major source for WS and CS residents. The model output was validated by calculation of probable daily intake of Hg. Our study suggests that Hg isotopes can be a useful tracer for quantifying exposure sources and understanding metabolic processes of Hg in humans.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Animales , China , Humanos , Isótopos de Mercurio , Minería
18.
Environ Sci Technol ; 51(21): 12321-12328, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28958148

RESUMEN

Rice consumption is the primary pathway of methylmercury (MeHg) exposure for residents in mercury-mining areas of Guizhou Province, China. In this study, compound-specific stable isotope analysis (CSIA) of MeHg was performed on rice samples collected in the Wanshan mercury mining area. An enrichment of 2.25‰ in total Hg (THg) δ202Hg was observed between rice and human hair, and THg Δ199Hg in hair was 0.12‰ higher than the value in rice. Rice and human hair samples in this study show distinct Hg isotope signatures compared to those of fish and human hair of fish consumers collected in China and other areas. Distinct Hg isotope signatures were observed between IHg and MeHg in rice samples (in mean ± standard deviation: δ202HgIHg at -2.30‰ ± 0.49‰, Δ199HgIHg at -0.08‰ ± 0.04‰, n = 7; δ202HgMeHg at -0.80‰ ± 0.25‰, Δ199HgMeHg at 0.08‰ ± 0.04‰, n = 7). Using a binary mixing model, it is estimated that the atmospheric Hg contributed 31% ± 16% of IHg and 17% ± 11% of THg in the rice samples and the IHg in soil caused by past mining activities contributed to the remaining Hg. This study demonstrated that Hg stable isotopes are good tracers of human MeHg exposure to fish and rice consumption, and the isotope data can be used for identifying the sources of IHg and MeHg in rice.


Asunto(s)
Monitoreo del Ambiente , Isótopos de Mercurio , Mercurio , Animales , China , Humanos , Compuestos de Metilmercurio , Minería , Oryza
19.
Artículo en Inglés | MEDLINE | ID: mdl-27834827

RESUMEN

To evaluate the mercury (Hg) exposure level of children located in a Hg mining area, total Hg concentrations and speciation were determined in hair and urine samples of children in the Wanshan Hg mining area, Guizhou Province, China. Rice samples consumed by these same children were also collected for total mercury (THg) and methyl-mercury (MeHg) analysis. The geometric mean concentrations of THg and MeHg in the hair samples were 1.4 (range 0.50-6.0) µg/g and 1.1 (range 0.35-4.2) µg/g, respectively, while the geometric mean concentration of urine Hg (UHg) was 1.4 (range 0.09-26) µg/g Creatinine (Cr). The average of the probable daily intake (PDI) of MeHg via rice consumption was 0.052 (0.0033-0.39) µg/kg/day, which significantly correlated with the hair MeHg concentrations (r = 0.55, p < 0.01), indicating that ingestion of rice is the main pathway of MeHg exposure for children in this area. Furthermore, 18% (26/141) of the PDIs of MeHg exceeded the USEPA Reference Dose (RfD) of 0.10 µg/kg/day, indicating that children in this area are at a high MeHg exposure level. This paper for the first time evaluates the co-exposure levels of IHg and MeHg of children living in Wanshan mining area, and revealed the difference in exposure patterns between children and adults in this area.


Asunto(s)
Exposición a Riesgos Ambientales , Contaminantes Ambientales/metabolismo , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Oryza/química , Adolescente , Niño , China , Monitoreo del Ambiente , Contaminantes Ambientales/orina , Femenino , Cabello/química , Humanos , Masculino , Mercurio/orina , Compuestos de Metilmercurio/orina
20.
Environ Sci Technol ; 50(17): 9262-9, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27485289

RESUMEN

The isotopic composition of atmospheric total gaseous mercury (TGM) and particle-bound mercury (PBM) and mercury (Hg) in litterfall samples have been determined at urban/industrialized and rural sites distributed over mainland China for identifying Hg sources and transformation processes. TGM and PBM near anthropogenic emission sources display negative δ(202)Hg and near-zero Δ(199)Hg in contrast to relatively positive δ(202)Hg and negative Δ(199)Hg observed in remote regions, suggesting that different sources and atmospheric processes force the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) in the air samples. Both MDF and MIF occur during the uptake of atmospheric Hg by plants, resulting in negative δ(202)Hg and Δ(199)Hg observed in litter-bound Hg. The linear regression resulting from the scatter plot relating the δ(202)Hg to Δ(199)Hg data in the TGM samples indicates distinct anthropogenic or natural influences at the three study sites. A similar trend was also observed for Hg accumulated in broadleaved deciduous forest foliage grown in areas influenced by anthropogenic emissions. The relatively negative MIF in litter-bound Hg compared to TGM is likely a result of the photochemical reactions of Hg(2+) in foliage. This study demonstrates the diagnostic stable Hg isotopic composition characteristics for separating atmospheric Hg of different source origins in China and provides the isotopic fractionation clues for the study of Hg bioaccumulation.


Asunto(s)
Isótopos de Mercurio , Mercurio , Fraccionamiento Químico , China , Monitoreo del Ambiente , Isótopos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...