Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ergonomics ; 66(6): 859-873, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36154913

RESUMEN

Low-back pain is a major concern among healthcare workers. One cause is the frequent adoption of repetitive forward bent postures in their daily activities. Occupational exoskeletons have the potential to assist workers in such situations. However, their efficacy is largely task-dependent, and their biomechanical benefit in the healthcare sector has rarely been evaluated. The present study investigates the effects of a passive back support exoskeleton in a simulated patient bed bathing task. Nine participants performed the task on a medical manikin, with and without the exoskeleton. Results show that working with the exoskeleton induced a significantly larger trunk forward flexion, by 13 deg in average. Due to this postural change, using the exoskeleton did not affect substantially the muscular and cardiovascular demands nor the perceived effort. These results illustrate that postural changes induced by exoskeleton use, whether voluntary or not, should be considered carefully since they may cancel out biomechanical benefits expected from the assistance. Practitioner summary: Low-back pain is a major concern among nurses, associated with bent postures. We observed that using a passive back-support exoskeleton during the typical patient bed bathing activity results in a larger trunk flexion, without changing muscular, cardiovascular or perceived physical effort.


Asunto(s)
Dispositivo Exoesqueleto , Dolor de la Región Lumbar , Humanos , Músculo Esquelético , Electromiografía , Dolor de la Región Lumbar/prevención & control , Postura , Fenómenos Biomecánicos
2.
IEEE Robot Autom Lett ; 7(2): 2391-2398, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35992731

RESUMEN

Humans excel at physical interaction despite long feedback delays and low-bandwidth actuators. Yet little is known about how humans manage physical interaction. A quantitative understanding of how they do is critical for designing machines that can safely and effectively interact with humans, e.g. amputation prostheses, assistive exoskeletons, therapeutic rehabilitation robots, and physical human-robot collaboration. To facilitate applications, this understanding should be in the form of a simple mathematical model that not only describes humans' capabilities but also their limitations. In robotics, hybrid control allows simultaneous, independent control of both motion and force and it is often assumed that humans can modulate force independent of motion as well. This paper experimentally tested that assumption. Participants were asked to apply a constant 5N force on a robot manipulandum that moved along an elliptical path. After initial improvement, force errors quickly plateaued, despite practice and visual feedback. Within-trial analyses revealed that force errors varied with position on the ellipse, rejecting the hypothesis that humans have independent control of force and motion. The findings are consistent with a feed-forward motion command composed of two primitive oscillations acting through mechanical impedance to evoke force.

3.
Sensors (Basel) ; 22(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35684601

RESUMEN

Improving the ergonomy of working environments is essential to reducing work-related musculo-skeletal disorders. We consider real-time ergonomic feedback a key technology for achieving such improvements. To this end, we present supportive tools for online evaluation and visualization of strenuous efforts and postures of a worker, also when physically interacting with a robot. A digital human model is used to estimate human kinematics and dynamics and visualize non-ergonomic joint angles, based on the on-line data acquired from a wearable motion tracking device.


Asunto(s)
Ergonomía , Enfermedades Musculoesqueléticas , Fenómenos Biomecánicos , Humanos , Movimiento , Postura
4.
Wearable Technol ; 2: e6, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38486635

RESUMEN

Introduction: Recently, many industrial exoskeletons for supporting workers in heavy physical tasks have been developed. However, the efficiency of exoskeletons with regard to physical strain reduction has not been fully proved, yet. Several laboratory and field studies have been conducted, but still more data, that cannot be obtained solely by behavioral experiments, are needed to investigate effects on the human body. Methods: This paper presents an approach to extend laboratory and field research with biomechanical simulations using the AnyBody Modeling System. Based on a dataset recorded in a laboratory experiment with 12 participants using the exoskeleton Paexo Shoulder in an overhead task, the same situation was reproduced in a virtual environment and analyzed with biomechanical simulation. Results: Simulation results indicate that the exoskeleton substantially reduces muscle activity and joint reaction forces in relevant body areas. Deltoid muscle activity and glenohumeral joint forces in the shoulder were decreased between 54 and 87%. Simultanously, no increases of muscle activity and forces in other body areas were observed. Discussion: This study demonstrates how a simulation framework could be used to evaluate changes in internal body loads as a result of wearing exoskeletons. Biomechanical simulation results widely agree with experimental measurements in the previous laboratory experiment and supplement such by providing an insight into effects on the human musculoskeletal system. They confirm that Paexo Shoulder is an effective device to reduce physical strain in overhead tasks. The framework can be extended with further parameters, allowing investigations for product design and evaluation.

6.
IEEE Trans Neural Syst Rehabil Eng ; 28(1): 152-164, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581086

RESUMEN

Overhead work is a frequent cause of shoulder work-related musculoskeletal disorders. Exoskeletons offering arm support have the potential to reduce shoulder strain, without requiring large scale reorganization of the workspace. Assessment of such systems however requires to take multiple factors into consideration. This paper presents a thorough in-lab assessment of PAEXO, a novel passive exoskeleton for arm support during overhead work. A list of evaluation criteria and associated performance metrics is proposed to cover both objective and subjective effects of the exoskeleton, on the user and on the task being performed. These metrics are measured during a lab study, where 12 participants perform an overhead pointing task with and without the exoskeleton, while their physical, physiological and psychological states are monitored. Results show that using PAEXO reduces shoulder physical strain as well as global physiological strain, without increasing low back strain nor degrading balance. These positive effects are achieved without degrading task performance. Importantly, participants' opinions of PAEXO are positive, in agreement with the objective measures. Thus, PAEXO seems a promising solution to help prevent shoulder injuries and diseases among overhead workers, without negatively impacting productivity.


Asunto(s)
Dispositivo Exoesqueleto , Enfermedades Musculoesqueléticas/rehabilitación , Diseño de Prótesis , Extremidad Superior , Brazo , Traumatismos del Brazo/prevención & control , Fenómenos Biomecánicos , Electromiografía , Dispositivo Exoesqueleto/efectos adversos , Voluntarios Sanos , Humanos , Masculino , Monitorización Neurofisiológica , Aceptación de la Atención de Salud , Desempeño Psicomotor , Carga de Trabajo , Adulto Joven
7.
IEEE Robot Autom Lett ; 3(1): 249-256, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29744380

RESUMEN

Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration.

8.
J Neurophysiol ; 120(2): 765-780, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29668379

RESUMEN

Manipulation of complex objects as in tool use is ubiquitous and has given humans an evolutionary advantage. This study examined the strategies humans choose when manipulating an object with underactuated internal dynamics, such as a cup of coffee. The dynamics of the object renders the temporal evolution complex, possibly even chaotic, and difficult to predict. A cart-and-pendulum model, loosely mimicking coffee sloshing in a cup, was implemented in a virtual environment with a haptic interface. Participants rhythmically manipulated the virtual cup containing a rolling ball; they could choose the oscillation frequency, whereas the amplitude was prescribed. Three hypotheses were tested: 1) humans decrease interaction forces between hand and object; 2) humans increase the predictability of the object dynamics; and 3) humans exploit the resonances of the coupled object-hand system. Analysis revealed that humans chose either a high-frequency strategy with antiphase cup-and-ball movements or a low-frequency strategy with in-phase cup-and-ball movements. Counter to hypothesis 1, they did not decrease interaction force; instead, they increased the predictability of the interaction dynamics, quantified by mutual information, supporting hypothesis 2. To address hypothesis 3, frequency analysis of the coupled hand-object system revealed two resonance frequencies separated by an antiresonance frequency. The low-frequency strategy exploited one resonance, whereas the high-frequency strategy afforded more choice, consistent with the frequency response of the coupled system; both strategies avoided the antiresonance. Hence, humans did not prioritize small interaction forces but rather strategies that rendered interactions predictable. These findings highlight that physical interactions with complex objects pose control challenges not present in unconstrained movements. NEW & NOTEWORTHY Daily actions involve manipulation of complex nonrigid objects, which present a challenge since humans have no direct control of the whole object. We used a virtual-reality experiment and simulations of a cart-and-pendulum system coupled to hand movements with impedance to analyze the manipulation of this underactuated object. We showed that participants developed strategies that increased the predictability of the object behavior by exploiting the resonance structure of the object but did not minimize the hand-object interaction force.


Asunto(s)
Modelos Biológicos , Movimiento , Análisis y Desempeño de Tareas , Adulto , Fenómenos Biomecánicos , Mano , Humanos , Fenómenos Mecánicos , Realidad Virtual , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...