Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cancer Res Clin Oncol ; 144(3): 459-468, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29305708

RESUMEN

The mechanisms of cell proliferation due to the overexpression of certain transcription factors (TFs) have been well documented in the cancer setting. However, many of these same TFs have pro-apoptotic effects, particularly when expressed or activated at high levels, a process referred to as feed-forward apoptosis (FFA). To determine whether cancers could be stratified on the basis of specific FFA signatures, RNASeq data representing samples from the cancer genome atlas were analyzed, revealing that high expression of the pro-proliferative TFs, MYC and YY1, is associated with a favorable outcome in low-grade glioma (LGG) and lung squamous cell carcinoma (LUSC), respectively. Analysis of the RNASeq data also led to the identification of specific apoptosis-effector genes whose expression levels correlate with increased survival rates, for both LGG and LUSC. Although FFA has been demonstrated as a general effect in cancer, in this report, for the first time, results identify specific TFs and their responsive effector genes that distinguish subsets of cancer samples undergoing more or less of a FFA process in a way that is associated with distinct patient survival rates.


Asunto(s)
Apoptosis/fisiología , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Glioma/mortalidad , Glioma/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Carcinoma de Células Escamosas/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/genética , Clasificación del Tumor , Transducción de Señal/genética , Tasa de Supervivencia , Factores de Transcripción/metabolismo
2.
Curr Genomics ; 18(3): 287-297, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28659724

RESUMEN

BACKGROUND: Relatively little cancer genome atlas data has been associated with clinically relevant stratifications of individual cancers. RESULTS: Mutations in two subsets of a cytoskeletal related and adhesion-related protein coding region set (CAPCRs) were determined to have strong associations with a negative outcome for melanoma, in-cluding a subset constituted by: DSCAM, FAT3, MUC17 and PCDHGC5 (p < 0.0001). CONCLUSION: Roles for CAPCR mutations in cancer progression raise a question about the potential dominant negative impact of these mutations for multi-meric subcellular and extra-cellular protein struc-tures.

3.
Gene ; 614: 37-48, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28257835

RESUMEN

Transcription factors that activate both proliferation- and apoptosis-effector genes, along with a number of related observations, have led to a proposal for a feed forward mechanism of activating the two gene classes, whereby a certain concentration of a transcription factor activates the proliferation-effector genes and a higher concentration of the transcription factor activates the apoptosis-effector genes. We reasoned that this paradigm of regulation could lead to, in the cancer setting, a selection for relatively reduced copy numbers of apoptosis-effector gene, transcription factor binding sites (TFBS). Thus, the aim of this investigation was to examine the DNA sequencing read depths of TFBS for a set of proliferation- and apoptosis-effector genes, normalized to the read depths found in matching blood samples, as provided by the cancer genome atlas (TCGA); and thereby document copy number differences among these TFBS. We determined that the melanoma and breast cancer, TCGA datasets could be divided into three categories: (i) no detectable copy number variation for the proliferation- and apoptosis-effector, shared TFBS; (ii) a relative increase in the copy number of proliferation-effector gene TFBS, compared with the copy number of the apoptosis-effector gene TFBS; and (iii) a relative decrease in the number of proliferation-effector gene TFBS. Thus, we conclude that changes in the relative copies of the shared TFBS, for proliferation- and apoptosis-effector genes, have the potential of impacting tumor cell proliferative and apoptotic capacities.


Asunto(s)
Apoptosis/genética , Neoplasias de la Mama/genética , Proliferación Celular/genética , Variaciones en el Número de Copia de ADN , Melanoma/genética , Factores de Transcripción/metabolismo , Secuencia de Bases/genética , Sitios de Unión/genética , Neoplasias de la Mama/patología , Biología Computacional/métodos , Bases de Datos Genéticas/clasificación , Femenino , Predisposición Genética a la Enfermedad/genética , Genoma Humano/genética , Humanos , Melanoma/patología , Mutación , Polimorfismo de Nucleótido Simple , Unión Proteica
4.
Cell Cycle ; 15(12): 1572-8, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27074591

RESUMEN

Single nucleotide polymorphisms (SNPs) that occur within CpG Islands may lead to increased hypermethylation if a SNP allele has the potential to form a CpG dinucleotide, as well as potentially lead to hypomethylation if a SNP allele eliminates a CpG dinucleotide. We analyzed CpG-related SNP allele frequencies in whole genome sequences (WGS) across 5 TCGA cancer datasets, thereby exploiting a more recent appreciation for signaling pathway degeneracy in cancer. The cancer data sets were analyzed for SNPs in CpG islands associated with the oncogenes, HRAS and MYC, and in the CpG islands associated with the tumor suppressor genes, APC, DCC, and RB1. We determined that one SNP allele (rs3824120) in a CpG island associated with MYC which eliminated a CpG was more common in the cancer datasets than in the 100Genomes databases (p < 0.01). For HRAS, 2 SNP alleles (rs112690925, rs7939028) that created CpG's occurred significantly less frequently in the cancer data sets than in the general SNP databases (e.g., rs7939028, p < 0.0002, in comparison with AllSNPs(142)). Also, one SNP allele (rs4940177) that created a CpG in a CpG island associated with the DCC tumor suppressor gene, was more common in the cancer datasets (p < 0.0007). To understand a broader picture of the potential of SNP alleles to create CpG's in CpG islands of tumor suppressor genes, we developed a scripted algorithm to assess the SNP alleles associated with the CpG islands of 43 tumor suppressor genes. The following tumor suppressor genes have the possibility of significant, percent increases in their CpG counts, depending on which SNP allele(s) is present: VHL, BRCA1, BRCA2, CHEK2, PTEN and RB1.


Asunto(s)
Islas de CpG , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Algoritmos , Alelos , Secuencia de Bases , Biología Computacional , Receptor DCC , Metilación de ADN , Conjuntos de Datos como Asunto , Frecuencia de los Genes , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Cancer Inform ; 15: 23-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26966347

RESUMEN

Tumor immunoscoring is rapidly becoming a universal parameter of prognosis, and T-cells isolated from tumor masses are used for ex vivo amplification and readministration to patients to facilitate an antitumor immune response. We recently exploited the cancer genome atlas (TCGA) RNASeq data to assess T-cell receptor (TcR) expression and, in particular, discovered strong correlations between major histocompatibility class II (MHCII) and TcR-α constant region expression levels. In this article, we describe the results of searching TCGA exome files for TcR-α V-regions, followed by searching the V-region datasets for TcR-α-J regions. Both primary and metastatic breast cancer sample files contained recombined TcR-α V-J regions, ranging in read counts from 16-39, at the higher level. Among four such V-J rearrangements, three were productive rearrangements. Rearranged TcR-α V-J regions were also detected in TCGA-bladder cancer, -lung cancer, and -ovarian cancer datasets, as well as exome files representing bladder cancer, in Moffitt Cancer Center patients. These results suggest that a direct search of commonly available, conventional exome files for rearranged TcR segments could play a role in more sophisticated immunoscoring or in identifying particular T-cell clones and TcRs directed against tumor antigens.

6.
Hum Vaccin Immunother ; 12(3): 593-8, 2016 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-26453454

RESUMEN

HLA-DR is the most commonly expressed and likely the most medically important human MHC class II, antigen presenting protein. In a normal immune response, HLA-DR binds to antigenic peptide and the HLA-DR/peptide complex binds to a T-cell receptor, thus contributing to T-cell activation and stimulation of an immune response against the antigen. When foreign antigen is not present, HLA-DR binds endogenous peptide which, under normal conditions does not stimulate an immune response. In most cases, the human peptide is CLIP, but a certain percentage of HLA-DR molecules will be present at the cell surface with other human peptides. We have recently shown that cell surface, CLIP/HLA-DR ratios are a measure of peptide heterogeneity, and in particular, changes in CLIP/HLA-DR ratios represent changes in the occupancy of HLA-DR by other, endogenous peptides. For example, treatment of cells with the HDAC inhibitor, Entinostat, leads to an upregulation of Cathepsin L1 and replacement of Cathepsin L1 senstitive peptides with HLA-DR binding, Cathepsin L1 resistant peptides, an alteration that can be at least partially assessed via assessment of CLIP/HLA-DR cell surface ratios. Here we assay for CLIP/HLA-DR ratios following treatment of immortalized B-cells with a variety of common drugs, almost all of which indicate significant changes in the CLIP/HLA-DR ratios. Furthermore, the CLIP/HLA-DR ratio changes parallel the impact of the drug panoply on cell viability, suggesting that alterations in the HLA-DR peptidome are governed by a variety of mechanisms, rather than exclusively dependent on a dedicated peptide loading process. These results raise questions about how FDA approved drugs may affect the immune response, and whether any of these drugs could be useful as vaccine adjuvants?


Asunto(s)
Presentación de Antígeno/efectos de los fármacos , Antígenos de Diferenciación de Linfocitos B/análisis , Linfocitos B/química , Linfocitos B/efectos de los fármacos , Antígenos HLA-DR/análisis , Antígenos de Histocompatibilidad Clase II/análisis , Humanos
7.
Cell Cycle ; 14(15): 2494-500, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-25945879

RESUMEN

Apoptosis- and proliferation-effector genes are substantially regulated by the same transactivators, with E2F-1 and Oct-1 being notable examples. The larger proliferation-effector genes have more binding sites for the transactivators that regulate both sets of genes, and proliferation-effector genes have more regions of active chromatin, i.e, DNase I hypersensitive and histone 3, lysine-4 trimethylation sites. Thus, the size differences between the 2 classes of genes suggest a transcriptional regulation paradigm whereby the accumulation of transcription factors that regulate both sets of genes, merely as an aspect of stochastic behavior, accumulate first on the larger proliferation-effector gene "traps," and then accumulate on the apoptosis effector genes, thereby effecting sequential activation of the 2 different gene sets. As IRF-1 and p53 levels increase, tumor suppressor proteins are first activated, followed by the activation of apoptosis-effector genes, for example during S-phase pausing for DNA repair. Tumor suppressor genes are larger than apoptosis-effector genes and have more IRF-1 and p53 binding sites, thereby likewise suggesting a paradigm for transcription sequencing based on stochastic interactions of transcription factors with different gene classes. In this report, using the ENCODE database, we determined that tumor suppressor genes have a greater number of open chromatin regions and histone 3 lysine-4 trimethylation sites, consistent with the idea that a larger gene size can facilitate earlier transcriptional activation via the inclusion of more transactivator binding sites.


Asunto(s)
Apoptosis/genética , Regulación de la Expresión Génica/genética , Genes Supresores de Tumor , Elementos Reguladores de la Transcripción/genética , Activación Transcripcional/genética , Sitios de Unión/genética , Cromatina/metabolismo , Metilación de ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción E2F1/genética , Humanos , Transportador 1 de Catión Orgánico/genética
8.
Gene ; 554(1): 50-7, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25307873

RESUMEN

Cancer cells undergo a variety of DNA copy number gains and losses (CNV), raising two important questions related to cancer development: (i) Which genes are affected? (ii) And how do CNVs, that do not represent complete deletions but do represent gene-dosage alterations, impact cancer cell functions? Recent studies have indicated that CNVs in cancer can impact genes for regulatory proteins long known to be associated with cancer development, but less is understood about CNVs affecting effector genes. Also, we have recently indicated the likely importance of transcription factor binding site (TFBS) copies in effector genes, in regulating the transition from a proliferative to an apoptotic state. Here we report data-mining analyses that indicate that copies of apoptosis-effector genes are commonly lost in cancer development, in comparison to proliferation-effector genes, and when not, apoptosis effector genes have silenced chromatin structures.


Asunto(s)
Apoptosis , Variaciones en el Número de Copia de ADN , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Neoplasias/genética , Proliferación Celular , Cromatina/metabolismo , Biología Computacional , Minería de Datos , Genoma Humano , Humanos , Mutación , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
9.
Gene ; 536(2): 398-406, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24291030

RESUMEN

In cancer biology, most molecular regulatory mechanisms are casually treated as on/off switches for specific cancer hallmarks, despite the lack of compelling evidence that cancer hallmarks can be exclusively attributed to specific regulatory proteins. To consider a novel paradigm for the basis of regulating a set of effector genes for proliferation, versus apoptosis-effector genes, we used a bioinformatics approach to ascertain differences between the transcription factor binding site occurrences in the two sets of genes. Results indicated that there are more binding sites per gene, for transcription factors that regulate both proliferation and apoptosis, among the proliferation-effector genes than among the apoptosis-effector genes. Proliferation-effector genes also had more open chromatin regions. We also applied this paradigm to the question of why p53 and interferon regulatory factor-1 (IRF-1) first activate cell cycle arrest genes followed by apoptosis genes, with results indicating the cycle arrest genes are bigger p53 and IRF-1 traps. These data support the idea that, as a set of transcription factors becomes active, there is a stochastic component leading to the accumulation of these transcription factors on genes that effect an initial phenotype before their accumulation on genes that effect a subsequent phenotype.


Asunto(s)
Expresión Génica/genética , Neoplasias/genética , Factores de Transcripción/genética , Apoptosis/genética , Sitios de Unión/genética , Línea Celular Tumoral , Proliferación Celular , Biología Computacional/métodos , Proteínas de Unión al ADN/genética , Humanos , Factor 1 Regulador del Interferón/genética , Células K562 , Unión Proteica/genética , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...