Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 126: 103886, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567489

RESUMEN

Polyglutamine (polyQ) induced neurodegeneration is one of the leading causes of progressive neurodegenerative disorders characterized clinically by deteriorating movement defects, psychiatric disability, and dementia. Calcium [Ca2+] homeostasis, which is essential for the functioning of neuronal cells, is disrupted under these pathological conditions. In this paper, we simulated Huntington's disease phenotype in the neuronal cells of the Drosophila eye and identified [Ca2+] pump, sarco-endoplasmic reticulum calcium ATPase (SERCA), as one of the genetic modifiers of the neurodegenerative phenotype. This paper shows genetic and molecular interaction between polyglutamine (polyQ) aggregates, SERCA and DIAP1. We present evidence that polyQ aggregates interact with SERCA and alter its dynamics, resulting in a decrease in cytosolic [Ca2+] and an increase in ER [Ca2+], and thus toxicity. Downregulating SERCA lowers the enhanced calcium levels in the ER and rescues, morphological and functional defects caused due to expanded polyQ repeats. Cell proliferation markers such as Yorkie (Yki), Scalloped (Sd), and phosphatidylinositol 3 kinases/protein kinase B (PI3K/Akt), also respond to varying levels of calcium due to genetic manipulations, adding to the amelioration of degeneration. These results imply that neurodegeneration due to expanded polyQ repeats is sensitive to SERCA activity, and its manipulation can be an important step toward its therapeutic measures.


Asunto(s)
Calcio , Drosophila , Proteínas Inhibidoras de la Apoptosis , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Apoptosis , Calcio/metabolismo , ATPasas Transportadoras de Calcio , Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas de Drosophila
2.
Indian J Clin Biochem ; 35(4): 397-409, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32837030

RESUMEN

The current Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak, the cause of coronavirus disease (COVID-19), has influenced health globally. So far, there are no established management options and prophylaxis for those who have been exposed to SARS-CoV-2, and those who develop COVID-19. Documented scientific evidences in similar viral outbreaks in past suggested few therapy regimens. These rather have not shown promising results in management of current pandemic. So, in the current review, we are exploring novel treatment strategies and therapies that are being explored and are in clinical and preclinical stages of research. To explore more about the same, we directed our search towards stem cell based, DNA based, or RNA based vaccines against COVID-19 under development by various universities, institutes or pharmaceutical companies. The current scientific literature and database search were performed by exploring various Trials registry (NIH: https://clinicaltrials.gov/ and https://www.coronavirus.gov) and Chinese clinical trial registry http://www.chictr.org.cn/) and for preclinical trials various University, Institutions, Pharmaceutical companies websites and news bulletins along with google search were checked routinely from 3rd March 2020 to 16 May 2020. The term "Stem Cell therapy and COVID-19", "Mesenchymal stem cell and corona 2019 virus", "DNA Vaccines and COVID-19, RNA Vaccines and COVID-19" and "Cell-based therapy with SARS-CoV-2, University/Institutions and COVID-19 research" were used. The vaccine trials (Stem Cells/DNA/RNA) which were cancelled were not included in this review. Similarly, few others like repurposing of drugs, Nano Vaccines, other miscellaneous trials of Herbs, Music therapy etc., were also excluded. In the present review, we have included the various novel therapies like stem cell therapy, DNA or RNA vaccines which are under development and if proven successful may have a lasting impact on the health industry.

3.
Eur J Pharmacol ; 746: 70-7, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25445050

RESUMEN

Elevated fatty acid levels play a pathogenic role in the development of insulin resistance, associated with type 2 diabetes. Interventions with ability to ameliorate fatty acid-induced insulin resistance might be useful for the management of diabetes. Here, we explored the effect of the diastereomeric mixture of calophyllic acid and isocalophyllic acid (F015) on palmitate-induced insulin resistance in skeletal muscle cells. An incubation of L6 myotubes with palmitate inhibited insulin-stimulated glucose uptake and translocation of GLUT4 to cell surface. Addition of F015 strongly prevented these inhibitions. Furthermore, F015 effectively inhibited the ability of palmitate to reduce insulin-stimulated phosphorylation of IRS-1, AKT and GSK-3ß in L6 myotubes. F015 presented a strong inhibition on palmitate-induced production of reactive oxygen species and associated inflammation, as the activation JNK, ERK1/2 and p38 MAPK were greatly reduced. F015 also inhibited inflammation-stimulated IRS-1 serine phosphorylation and restored insulin-stimulated IRS-1 tyrosine phosphorylation in presence of palmitate, resulted in enhanced insulin sensitivity. Results suggest that F015 inhibits palmitate-induced, reactive oxygen species-associated MAPK kinase activation and restored insulin sensitivity through regulating IRS-1 function. All these indicate F015 to be a potentially therapeutic candidate for insulin resistance and type 2 diabetes.


Asunto(s)
Cromonas/farmacología , Ácidos Grasos no Esterificados/efectos adversos , Insulina/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Cromonas/química , Interacciones Farmacológicas , Activación Enzimática/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno Sintasa Quinasas/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Palmitatos/efectos adversos , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Estereoisomerismo
4.
Mol Cell Endocrinol ; 395(1-2): 51-60, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25109277

RESUMEN

The 4-hydroxyisoleucine (4-HIL), an unusual amino acid isolated from the seeds of Trigonella foenum-graecum was investigated for its metabolic effects to ameliorate free fatty acid-induced insulin resistance in skeletal muscle cells. An incubation of L6 myotubes with palmitate inhibited insulin stimulated-glucose uptake and -translocation of glucose transporter 4 (GLUT4) to the cell surface. Addition of 4-HIL strongly prevented this inhibition. We then examined the insulin signaling pathway, where 4-HIL effectively inhibited the ability of palmitate to reduce insulin-stimulated phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (PKB/AKT), AKT substrate of 160 kD (AS160) and glycogen synthase kinase 3ß (GSK-3ß) in L6 myotubes. Moreover, 4-HIL presented strong inhibition on palmitate-induced production of reactive oxygen species (ROS) and associated inflammation, as the activation of NF-κB, JNK1/2, ERK1/2 and p38 MAPK was greatly reduced. 4-HIL also inhibited inflammation-stimulated IRS-1 serine phosphorylation and restored insulin-stimulated IRS-1 tyrosine phosphorylation in the presence of palmitate, leading to enhanced insulin sensitivity. These findings suggested that 4-HIL could inhibit palmitate-induced, ROS-associated inflammation and restored insulin sensitivity through regulating IRS-1 function.


Asunto(s)
Ácidos Grasos/metabolismo , Resistencia a la Insulina , Isoleucina/análogos & derivados , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Músculo Esquelético/metabolismo , Animales , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Isoleucina/farmacología , Sistema de Señalización de MAP Quinasas/genética , Músculo Esquelético/patología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
5.
Bioorg Med Chem Lett ; 24(12): 2674-9, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24813738

RESUMEN

Structure modifications of lupeol at the isopropylene moiety have been described via allylic oxidation using selenium dioxide. The antidiabetic efficacy of lupeol analogues were evaluated in vitro as glucose uptake stimulatory effect in L6 skeletal muscle cells. From all tested compounds, 2, 3, 4b and 6b showed significant stimulation of glucose uptake with respective percent stimulation of 173.1 (p <0.001), 114.1 (p <0.001), 98.3 (p <0.001) and 107.3 (p <0.001) at 10µM concentration. Stimulation of glucose uptake by these compounds is associated with enhanced translocation of glucose transporter 4 (GLUT4) and activation of IRS-1/PI3-K/AKT-dependent signaling pathway in L6 cells. Structure-activity relationship analysis of these analogues demonstrated that the integrity of α,ß-unsaturated carbonyl and acetyl moieties were important in the retention of glucose uptake stimulatory effect. It is therefore proposed that naturally occurring lupeol and their analogues might reduce blood glucose, at least in part, through stimulating glucose utilization by skeletal muscles.


Asunto(s)
Diseño de Fármacos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Músculo Esquelético/efectos de los fármacos , Triterpenos Pentacíclicos/síntesis química , Triterpenos Pentacíclicos/farmacología , Transporte Biológico , Metabolismo de los Hidratos de Carbono/genética , Células Cultivadas , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Humanos , Hipoglucemiantes/química , Estructura Molecular , Triterpenos Pentacíclicos/química , Relación Estructura-Actividad
6.
Mol Cell Endocrinol ; 370(1-2): 11-9, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23428406

RESUMEN

The diastereomeric mixture of calophyllic acid and isocalophyllic acid (F015) isolated from the leaves of Calophyllum inophyllum was investigated for the metabolic effect on glucose transport in skeletal muscle cells. In L6 myotubes, F015 dose-dependently stimulated glucose uptake by increasing translocation of glucose transporter4 (GLUT4) to plasma membrane without affecting their gene expression. The effects on glucose uptake were additive to insulin. Inhibitors analyses revealed that F015-induced glucose uptake was dependent on the activation of phosphatidylinositol-3-kinase (PI-3-K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), while independent to the activation of 5'AMP-activated kinase (AMPK). F015 significantly increased the phosphorylation of AKT, AS160 and ERK1/2, account for the augmented glucose transport capacity in L6 myotubes. Furthermore, F015 improved glucose tolerance and enhanced insulin sensitivity in skeletal muscle of dexamethasone-induced insulin resistant mice. Our findings demonstrate that F015 activates glucose uptake in skeletal muscle cells through PI-3-K- and EKR1/2-dependent mechanisms and can be a potential lead for the management of diabetes and obesity.


Asunto(s)
Cromonas/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Calophyllum/metabolismo , Línea Celular , Membrana Celular/metabolismo , Dexametasona , Diabetes Mellitus/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Sistema de Señalización de MAP Quinasas , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...