Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
World J Clin Cases ; 11(25): 5840-5856, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37727490

RESUMEN

Insulin, a small protein with 51 amino acids synthesized by pancreatic ß-cells, is crucial to sustain glucose homeostasis at biochemical and molecular levels. Numerous metabolic dysfunctions are related to insulin-mediated altered glucose homeostasis. One of the significant pathophysiological conditions linked to the insulin associated disorder is diabetes mellitus (DM) (type 1, type 2, and gestational). Insulin resistance (IR) is one of the major underlying causes of metabolic disorders despite its association with several physiological conditions. Metabolic syndrome (MS) is another pathophysiological condition that is associated with IR, hypertension, and obesity. Further, several other pathophysiological disorders/diseases are associated with the insulin malfunctioning, which include polycystic ovary syndrome, neuronal disorders, and cancer. Insulinomas are an uncommon type of pancreatic ß-cell-derived neuroendocrine tumor that makes up 2% of all pancreatic neoplasms. Literature revealed that different biochemical events, molecular signaling pathways, microRNAs, and microbiota act as connecting links between insulin disorder and associated pathophysiology such as DM, insuloma, neurological disorder, MS, and cancer. In this review, we focus on the insulin-related disorders and the underlying mechanisms associated with the pathophysiology.

2.
Life Sci ; 330: 122022, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37579835

RESUMEN

Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Probióticos , Humanos , Eje Cerebro-Intestino , Enfermedad de Parkinson/terapia , Microbioma Gastrointestinal/fisiología , Probióticos/uso terapéutico , Encéfalo
3.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37350746

RESUMEN

Clinical, epidemiological, and molecular studies have sufficiently highlighted the vitality of vitamin D [25(OH)D and 1,25(OH)2D] in human health and wellbeing. Globally, vitamin D deficiency (VDD) has become a public health concern among all age groups. There is a very high prevalence of VDD per the estimates from several epidemiological studies on different ethnic populations. But, population-specific scales do not support these estimates to define VDD clinically and consistent genetic associations. However, clinical studies have shown the relevance of serum vitamin D screening and oral supplementation in improving health conditions, pointing toward a more prominent role of vitamin D in health and wellness. Routinely, the serum concentration of vitamin D is measured to determine the deficiency and is correlated with physiological conditions and clinical symptoms. Recent research points toward a more inclusive role of vitamin D in different disease pathologies and is not just limited to otherwise bone health and overall growth. VDD contributes to the natural history of systemic ailments, including cardiovascular and systemic immune diseases. Considering its significant impact on premature morbidity and mortality, there is a compelling need to comprehensively review and document the direct and indirect implications of VDD in immune system deregulation, systemic inflammatory conditions, and cardio-metabolism. The recommendations from this review call for furthering our research concerning vitamin D and its direct and indirect implications.

4.
Neurotox Res ; 40(6): 2238-2252, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36069979

RESUMEN

The Pax6 binds to promoter sequence elements of genes involved in immunological surveillance and interacts with Iba1, p53, Ras-GAP, and Sparc in the brain of mice. The Pax6 also affects the expression pattern of genes involved in neurogenesis and neurodegeneration. However, the expression and association of Pax6 in the brain under immunologically challenged conditions are still elusive. Therefore, it has been intended to analyze the association of Pax6 in the immunity of the brain using the immune-challenged Dalton's lymphoma (DL) mice model. The expressions of Pax6, Iba1, and Tmem119 decreased, but expressions of Ifn-γ, Tnf-α, Bdnf, and Tgf-ß increased in the brain of immune-challenged mice as compared to the control. The level of co-expression of Pax6 decreased in dual positive cells with Iba1, Tmem119, Sparc, p53, Bdnf, and Tgf-ß in the brain of immune-challenged mice. Binding of Pax6 to multiple sites of the promoter sequences of Bdnf and Tgf-ß indicates their Pax6-associated differential expression and association with immune responsive gene. The levels of binding of Pax6 to Tmem119, Iba1, Ifn-γ, and Tnf-α got altered during the immune-challenged state as compared to control. Results provide the first evidence of the association of Pax6 in brain-specific immunity.


Asunto(s)
Factor de Necrosis Tumoral alfa , Proteína p53 Supresora de Tumor , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Vigilancia Inmunológica , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
J Neurosci Res ; 100(10): 1845-1861, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35856508

RESUMEN

Mitochondria are one of the essential cellular organelles. Apart from being considered as the powerhouse of the cell, mitochondria have been widely known to regulate redox reaction, inflammation, cell survival, cell death, metabolism, etc., and are implicated in the progression of numerous disease conditions including neurodegenerative diseases. Since brain is an energy-demanding organ, mitochondria and their functions are important for maintaining normal brain homeostasis. Alterations in mitochondrial gene expression, mutations, and epigenetic modification contribute to inflammation and neurodegeneration. Dysregulation of reactive oxygen species production by mitochondria and aggregation of proteins in neurons leads to alteration in mitochondria functions which further causes neuronal death and progression of neurodegeneration. Pharmacological studies have prioritized mitochondria as a possible drug target in the regulation of neurodegenerative diseases. Therefore, the present review article has been intended to provide a comprehensive understanding of mitochondrial role in the development and progression of neurodegenerative diseases mainly Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis followed by possible intervention and future treatment strategies to combat mitochondrial-mediated neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Homeostasis , Humanos , Inflamación/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
6.
J Mol Model ; 28(4): 101, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35325302

RESUMEN

Natural products have proved beneficial in reducing neuroinflammation in neurological diseases. Their impacts have also been associated with the activities of microglia, responsible for brain-specific immunity. Recent studies have shown the involvement of the number of microglia-specific proteins in the regulation of brain-specific immunity. However, molecular targets of natural products and their mechanism of interaction with microglia-specific proteins are elusive. Since the genetic signature of microglia offers many potential targets for drug discovery, molecular docking followed by molecular dynamics (MD) simulations of cluster of differentiation 40 ligand (CD40L) and colony-stimulating factor 1 receptor (CSF1R) kinase domain protein with some known neuro-immunomodulators (Curcumin, Cannabidiol, Ginsenoside Rg1, Resveratrol, and Sulforaphane) has been evaluated. Curcumin and cannabidiol were observed likely to modulate CD40L and expression of cytokines and entry of inflammatory cells. Resveratrol and cannabidiol may affect the CSF1R kinase domain and activation of microglia. Our finding suggests that curcumin, cannabidiol, and resveratrol may serve specific drug ligands in regulating microglia-mediated brain immunity.


Asunto(s)
Ligando de CD40 , Microglía , Ligando de CD40/metabolismo , Factores Inmunológicos/metabolismo , Ligandos , Microglía/metabolismo , Simulación del Acoplamiento Molecular
7.
Artículo en Inglés | MEDLINE | ID: mdl-35068664

RESUMEN

The sudden outbreak of the novel coronavirus infection (COVID-19, SARS-CoV-2 virus) is posing a significant threat by affecting millions of people across the globe showing mild to severe symptoms of pneumonia and acute respiratory distress. The absence of precise information on primary transmission, diagnosis, prognosis, and therapeutics for patients with COVID-19 makes prevention and control tough. In the current scenario, only supportive treatment is available, which in turn possess a biggest challenge for scientists to develop specific drugs and vaccines for COVID-19. Further, India, with the second largest populated country and fluctuating climatic conditions quarterly, has high vulnerability towards COVID-19 infection. Thus, this highlights the importance of a better understanding of the COVID-19 infection, pathology, diagnosis and its treatment. The present review article has been intended to discuss the COVID-19 biology, mechanism of infection in humans with primary effects on pregnancy, the nervous system, diabetes, and cardiovascular disease. The article will also discuss the drug repurposing strategy as an alternative line of treatment and clinical practices recommended by the World Health Organization and other government agencies and represent the COVID-19 scenario with the Indian context.

8.
Front Mol Neurosci ; 15: 1072046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698776

RESUMEN

The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.

9.
Front Pharmacol ; 12: 654489, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33927630

RESUMEN

Microglia, a type of innate immune cell of the brain, regulates neurogenesis, immunological surveillance, redox imbalance, cognitive and behavioral changes under normal and pathological conditions like Alzheimer's, Parkinson's, Multiple sclerosis and traumatic brain injury. Microglia produces a wide variety of cytokines to maintain homeostasis. It also participates in synaptic pruning and regulation of neurons overproduction by phagocytosis of neural precursor cells. The phenotypes of microglia are regulated by the local microenvironment of neurons and astrocytes via interaction with both soluble and membrane-bound mediators. In case of neuron degeneration as observed in acute or chronic neurodegenerative diseases, microglia gets released from the inhibitory effect of neurons and astrocytes, showing activated phenotype either of its dual function. Microglia shows neuroprotective effect by secreting growths factors to heal neurons and clears cell debris through phagocytosis in case of a moderate stimulus. But the same microglia starts releasing pro-inflammatory cytokines like TNF-α, IFN-γ, reactive oxygen species (ROS), and nitric oxide (NO), increasing neuroinflammation and redox imbalance in the brain under chronic signals. Therefore, pharmacological targeting of microglia would be a promising strategy in the regulation of neuroinflammation, redox imbalance and oxidative stress in neurodegenerative diseases. Some studies present potentials of natural products like curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane to suppress activation of microglia. These natural products have also been proposed as effective therapeutics to regulate the progression of neurodegenerative diseases. The present review article intends to explain the molecular mechanisms and functions of microglia and molecular dynamics of microglia specific genes and proteins like Iba1 and Tmem119 in neurodegeneration. The possible interventions by curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane on microglia specific protein Iba1 suggest possibility of natural products mediated regulation of microglia phenotypes and its functions to control redox imbalance and neuroinflammation in management of Alzheimer's, Parkinson's and Multiple Sclerosis for microglia-mediated therapeutics.

10.
Mol Biol Rep ; 46(3): 2617-2629, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30980270

RESUMEN

The antibacterial and anticancerous properties of EMTAHDCA have already been reported in our previous study. However, mode of action of EMTAHDCA is still elusive. The present study was aimed to investigate the molecular targets in Escherichia coli and spleen of lymphoma-bearing mice in response to cyanocompound 9-ethyliminomethyl-12 (morpholin-4-ylmethoxy)-5, 8, 13, 16-tetraaza -hexacene-2, 3- dicarboxylic acid (EMTAHDCA) isolated from fresh water cyanobacterium Nostoc sp. MGL001. Differential expressions of proteins were observed in both E. coli and spleen of lymphoma-bearing mice after EMTAHDCA treatment. In continuation of our previous study, the present study revealed that the antibacterial agent, EMTAHDCA causes the drastic reduction in synthesis of proteins related to replication, transcription, translation and transportation in E. coli. Probably the direct or indirect interaction of this compound with these important metabolic processes led to the reduction in growth and cell death. Furthermore, the anticancerous property of the compound EMTAHDCA reflected as down regulation in proteins of cell cycle, cellular metabolism, signalling, transcription and transport together with up regulation of apoptosis, DNA damage and immunoprotection related proteins in spleen of lymphoma-bearing mice. In this study the EMTAHDCA induced modulations in expression of proteins of key metabolic pathways in E. coli and spleen cells of lymphoma bearing mice helped in understanding the mechanism underlying the antibacterial and anti-cancerous property.


Asunto(s)
Ácidos Dicarboxílicos/farmacología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Linfoma/tratamiento farmacológico , Esplenomegalia/tratamiento farmacológico , Animales , Antibacterianos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Cianobacterias/química , Ácidos Dicarboxílicos/aislamiento & purificación , Escherichia coli/metabolismo , Linfoma/patología , Ratones , Ratones Endogámicos AKR , Morfolinas/aislamiento & purificación , Morfolinas/farmacología , Bazo/citología , Bazo/efectos de los fármacos , Bazo/patología , Esplenomegalia/patología , Transcriptoma
11.
Cell Mol Neurobiol ; 38(4): 919-927, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29134420

RESUMEN

The Pax5, a B-cell-Specific Activator Protein (BSAP) and redox-sensitive transcription factor, is expressed in the immune-privileged brain, B-lymphocytes, lymph nodes and spleen. PAX5-mediated immune pathway has also been described in the progression of Glioblastoma multiforme. However, the status of Pax5 and its role in brain immunity are not yet elucidated. In silico analysis of Pax5 interacting proteins predicts its interaction with proteins of cell proliferation, differentiation of hematopoietic cells, neurogenesis and several cell signalling pathways. Promoter analysis shows multiple binding sites for Pax5 in promoter of ionized calcium-binding adapter molecule 1 (Iba1). Like Iba1, Pax5 is also associated with inflammatory and immune response, activation of leukocyte and remodelling of actin cytoskeleton. Therefore, localization and interaction of Pax5 with Iba1 in brain of mice were studied using Chromatin Immunoprecipitation (ChIP), Co-Immunoprecipitation (Co-IP) and Immuno-fluorescence assay. The Pax5- and Iba1-positive cells were observed in cerebral cortex, cerebellum, olfactory bulb, hippocampus, and ventricles of brain. The co-localization of Pax5 and Iba1 was evident in microglia in almost all evaluated regions of brain. In some regions, Pax5- and Iba1-positive were distinctly compartmentalized. The Pax5a/b interacts with Iba1 and binds to its regulatory sequences. Results indicate Pax5-associated activities of Iba1 in microglia in brain of mice.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos/metabolismo , Factor de Transcripción PAX5/metabolismo , Animales , Linfocitos B/metabolismo , Linfocitos B/fisiología , Diferenciación Celular , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Microglía/metabolismo , Factor de Transcripción PAX5/genética , Regiones Promotoras Genéticas
12.
Ann Neurosci ; 24(1): 20-25, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28588354

RESUMEN

BACKGROUND: Patients having mutations of Pax6 bear phenotypes that match age-associated neurological disorders. Mutations affect most cellular functions such as cell division, growth, differentiation, and cell death in brain, eyes, pituitary, pineal, and pancreas. The progressive reduction in the level of Pax6 during aging has also been observed. However, information about downstream targets of Pax6 in brain is unclear. Therefore, it is presumed that age-dependent alterations of Pax6 may also affect cascades of promoter sequence recognition in brain during aging. PURPOSE: This study is aimed at studying the interaction of Pax6 with DNA sequence elements to explore alteration in gene targets and transcription networks of Pax6 in brain during aging. METHODS: Chromatin immunoprecipitation with anti-Pax6 using tissue extracts of brain from newborn, young, adult, and old mice was done. Pulled DNA from brain was analysed by gene-specific polymerase chain reaction (PCR). Amplified PCR products were sequenced and analyzed. RESULTS: Age-associated alterations in binding to genetic sequence elements by Pax6 were observed. Promoter analysis predicts genes involved in neuronal survival (Bdnf, Sparc), specificity of astrocyte (S100ß, Gfap), cell-proliferation (Pcna), inflammation and immune response (interferon-γ, tumour necrosis factor-α), management of oxidative stress (Sod, Cat), and hypoxia (Ldh). CONCLUSION: The Pax6 either directly or indirectly binds to promoter sequences of genes essential for immunological surveillance and energy metabolism in brain that alters during aging.

13.
J Chem Neuroanat ; 82: 60-64, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28476689

RESUMEN

The Pax6, a transcriptional regulator and multifunctional protein, has been found critical for neurogenesis, neuro-degeneration, mental retardation, neuroendocrine tumors, glioblastoma and astrocytomas. The age-associated alteration in the expression of Pax6 in neuron and glia has also been observed in the immunologically privileged brain. Therefore, it is presumed that Pax6 may modulate brain immunity by activation of microglia either directly interacting with genes or proteins of microglia or indirectly though inflammation associated with neurodegeneration. This report describes evaluation of expression, co-localization and interactions of Pax6 with Ionized binding protein1 (Iba1) in brain of aging mice by Immunohistochemistry, Chromatin Immuno-precipitation (ChIP) and Co-immunoprecipitation (Co-IP), respectively. The co-localization of Pax6 with Iba1 was observed in the cerebellum, cerebral cortex, hippocampus, midbrain and olfactory lobe. The Pax6 and Iba1 also interact physically. The age-dependent alteration in their expression and co-localization were also observed in mice. Results indicate Pax6-dependent activities of Iba1 in the remodelling of microglia during immunological surveillance of the brain.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos/metabolismo , Microglía/metabolismo , Factor de Transcripción PAX6/metabolismo , Envejecimiento/genética , Animales , Proteínas de Unión al Calcio/genética , Masculino , Ratones , Proteínas de Microfilamentos/genética , Factor de Transcripción PAX6/genética , Unión Proteica/fisiología
14.
Ann Neurosci ; 22(4): 226-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26525840

RESUMEN

BACKGROUND: Pax6, a highly conserved multifunctional transcription factor, has been critical for neurogenesis and neuronal plasticity. It is presumed that if level of Pax6 approaches either low or null, critical genes responsible for maintaining functional status of neurons or glia would be modulated. PURPOSE: Therefore, it has been intended to explore possibility of either direct or indirect influence of Pax6 in neurodegeneration. METHODS: The cell lines having origin of murine embryonic fibroblast (Pax6-non expressing, NIH3T3-cell line), murine neuroblastoma (Pax6-expressing brain-derived, Neuro-2a-cell line), and human glioblastoma-astrocytoma (U87MG) were cultured and maintained in a CO2 incubator at 37°C and 5% CO2 in DMEM containing 10% fetal bovine serum. The knockdown of endogenous Pax6 in Neuro-2a cells was achieved through siRNA based gene knock-down approach. The efficiency and validation of knock-down was done by real time PCR. The knock-down of Pax6 was successfully achieved. RESULTS: The levels of expression of transcripts of some of the proposed putative markers of neurodegeneration like Pax6, S100ß, GFAP, BDNF, NGN2, p73α, p73δ, LDH, SOD, and Catalase were analyzed in Pax6 knockdown condition for analysis of role of Pax6 in neurodegeneration. Since the Pax6 has been proposed to bind to promoter sequences of catalase, and catalase suppresses TGFß, relative lower levels of catalase in Neuro-2a and U-87MG as compared to NIH-3T3 indicates a possible progressive dominant negative impact of Pax6. However, presence of SOD and LDH indicates alternative protective mechanism. CONCLUSION: Presence of BDNF and TGFß indicates association between them in glioblastoma-astrocytoma. Therefore, Pax6 seems to be involved directly with p53 and TGFß mediated pathways and indirectly with redox-sensitive pathway regulation. The neurodegenerative markers S100ß, GFAP, BDNF, NGN2, p73α, p73δ, observed downregulated in Pax6 knockdown condition suggest Pax6-mediated regulation of these markers. Observations enlighten Pax6-mediated influences on cascades of genes involved in growth, differentiation and maturation of neurons and glia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...