Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 919: 170815, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38336047

RESUMEN

Wildlife are implicated in the dissemination of antimicrobial resistance, but their roles as hosts for Escherichia coli that pose a threat to human and animal health is limited. Gulls (family Laridae) in particular, are known to carry diverse lineages of multiple-antibiotic resistant E. coli, including extra-intestinal pathogenic E. coli (ExPEC). Whole genome sequencing of 431 E. coli isolates from 69 healthy Australian silver gulls (Chroicocephalus novaehollandiae) sampled during the 2019 breeding season, and without antibiotic selection, was undertaken to assess carriage in an urban wildlife population. Phylogenetic analysis and genotyping resolved 123 sequence types (STs) representing most phylogroups, and identified diverse ExPEC, including an expansive phylogroup B2 cluster comprising 103 isolates (24 %; 31 STs). Analysis of the mobilome identified: i) widespread carriage of the Yersinia High Pathogenicity Island (HPI), a key ExPEC virulence determinant; ii) broad distribution of two novel phage elements, each carrying sitABCD and iii) carriage of the transmissible locus of stress tolerance (tLST), an element linked to sanitation resistance. Of the 169 HPI carrying isolates, 49 (48 %) represented diverse B2 isolates hosting FII-64 ColV-like plasmids that lacked iutABC and sitABC operons typical of ColV plasmids, but carried the serine protease autotransporter gene, sha. Diverse E. coli also carried archetypal ColV plasmids (52 isolates; 12 %). Clusters of closely related E. coli (<50 SNVs) from ST58, ST457 and ST746, sourced from healthy gulls, humans, and companion animals, were frequently identified. In summary, anthropogenically impacted gulls host an expansive E. coli population, including: i) putative ExPEC that carry ColV virulence gene cargo (101 isolates; 23.4 %) and HPI (169 isolates; 39 %); ii) atypical enteropathogenic E. coli (EPEC) (17 isolates; 3.9 %), and iii) E. coli that carry the tLST (20 isolates; 4.6 %). Gulls play an important role in the evolution and transmission of E. coli that impact human health.


Asunto(s)
Charadriiformes , Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Microbiota , Animales , Humanos , Escherichia coli/genética , Escherichia coli Patógena Extraintestinal/genética , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/epidemiología , Filogenia , Australia , Antibacterianos , Factores de Virulencia/genética , Animales Salvajes
2.
Ecotoxicology ; 32(4): 470-486, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37099201

RESUMEN

The relationship between sublethal pesticide exposure and oxidative stress in an ecologically relevant field setting is relatively unknown for reptiles. Oxidative stress is a multi-faceted concept that dictates key survival and fitness parameters in any organism. Fipronil and fenitrothion are two pesticides widely used globally for agricultural pest management. Using a field-based, BACI designed experiment we investigated the impact of sublethal pesticide exposure on oxidative stress biomarkers protein carbonyl and DNA damage (8-OHdG), in an arid-zone lizard species, Pogona vitticeps. A single ecologically relevant dose of pesticide was applied via oral gavage to treatment animals. Lizard condition, activity measures, and blood biomarkers were measured at relevant sampling intervals. Cholinesterase (ChE) and acetylcholinesterase (AChE) enzymatic biomarkers were measured in response to fenitrothion, and fipronil blood residues were measured for fipronil-treated lizards. Results suggested no significant treatment effect of either pesticide on parameters measured, however, 8-OHdG levels decreased by ≥ 45% for both pesticide treatment groups and not controls. Protein carbonyl levels showed a high degree of individual variation that proved more influential than pesticide exposure. Building our understanding of the macromolecular impacts of sublethal pesticide exposure on wild lizard populations is an integral step in addressing the current gap in literature and management practices. Our study has also highlighted the complex nature of studying oxidative stress in the field and the sheer necessity of future study.


Asunto(s)
Lagartos , Plaguicidas , Animales , Plaguicidas/toxicidad , Acetilcolinesterasa/metabolismo , Fenitrotión , Lagartos/metabolismo , Estrés Oxidativo , Biomarcadores/metabolismo
3.
Conserv Physiol ; 10(1): coac024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492410

RESUMEN

Assessment of non-target impacts of pesticides used widely in agriculture and pest management rarely considers reptiles. Despite their integral role in all ecosystems, particularly arid ecosystems, reptiles are not included in risk assessments. Two pesticides used in agricultural pest management are fipronil and fenitrothion. Here, we used a field-based BACI design experiment in semi-arid Australia to investigate the impact of these pesticides on basic physiological and behavioural parameters of a common arid-zone lizard species, Pogona vitticeps. Fipronil and fenitrothion were applied at ecologically relevant doses via oral gavage. Before and after dosing, blood, physical activity and body condition parameters were assessed. We found that temperature significantly influenced lizard activity in the morning period of movement; however, fipronil-treated individuals moved at least 49% less than fenitrothion-treated and control lizards from 7 days after dosing through to the end of the experiment. Physiological measures did not change significantly before or after exposure to both pesticides; however, other indicators showed evidence of exposure, which remained for the entirety of our monitoring period. On average, cholinesterase inhibition was still >30% compared with control lizards at the end of 4 weeks, and fipronil sulfone blood residues remained at 0.219 µg/ml. Our study provides novel insights into the impacts that common pesticides have on widespread lizard species. We show that an ecologically relevant low dose of fipronil alters the behaviour of P. vitticeps, which has the potential to impact longer-term survivability. Persistence of both pesticides in the blood of all treatment lizards throughout the experiment indicates they are unable to clear these toxins within a month of being exposed. This may be significant for compounding exposure and latent toxicity. These findings highlight the susceptibility that reptiles have to a selection of common pesticides and the inherent need for higher prominence in wildlife ecotoxicological research.

4.
Ecotoxicology ; 30(2): 381-386, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33443713

RESUMEN

The ability to produce large numbers of pesticide-exposed insects (e.g. crickets) is important for feeding studies into the effects of pesticides on key predatory species. House crickets (Acheta domesticus L. 1758) were submersed in serial dilutions of the pesticides, fenitrothion and fipronil, used for the control of locusts in Australia, and then rapidly frozen for residue analysis. Good correlations were found between increasing concentrations of serial pesticide dilutions and the resultant residual concentrations of the parent compounds in crickets, with R2 values of 0.949 (fenitrothion) and 0.946 (fipronil). R2 values for the much less abundant fipronil metabolites were lower 0.858 (sulfone), 0.368 (desulfinyl) and 0.785 (sulfide). This method enables insecticide exposure mimicking the field conditions to be assessed, and can be done immediately prior to an experiment. This ensures locusts remain alive when introduced to the feeding chambers, and enables multiple prey items to be dosed with a known pesticide burden.


Asunto(s)
Insecticidas , Plaguicidas , Animales , Australia , Fenitrotión/toxicidad , Insecticidas/análisis , Insecticidas/toxicidad , Invertebrados , Plaguicidas/toxicidad
5.
mSphere ; 5(6)2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239365

RESUMEN

Although most of the approximately 94 million annual human cases of gastroenteritis due to Salmonella enterica resolve without medical intervention, antimicrobial therapy is recommended for patients with severe disease. Wild birds can be natural hosts of Salmonella that pose a threat to human health; however, multiple-drug-resistant serovars of S. enterica have rarely been described. In 2012, silver gull (Chroicocephalus novaehollandiae) chicks at a major breeding colony were shown to host Salmonella, most isolates of which were susceptible to antibiotics. However, multiple-drug-resistant (MDR) Escherichia coli with resistance to carbapenems, ceftazidime, and fluoroquinolones was reported from this breeding colony. In this paper, we describe a novel MDR Salmonella strain subsequently isolated from the same breeding colony. SG17-135, an isolate of S. enterica with phenotypic resistance to 12 individual antibiotics but only nine antibiotic classes including penicillins, cephalosporins, monobactams, macrolides, fluoroquinolones, aminoglycosides, dihydrofolate reductase inhibitors (trimethoprim), sulfonamides, and glycylcyclines was recovered from a gull chick in 2017. Whole-genome sequence (WGS) analysis of SG17-135 identified it as Salmonella enterica serovar Agona (S Agona) with a chromosome comprising 4,813,284 bp, an IncHI2 ST2 plasmid (pSG17-135-HI2) of 311,615 bp, and an IncX1 plasmid (pSG17-135-X) of 27,511 bp. pSG17-135-HI2 housed a complex resistance region comprising 16 antimicrobial resistance genes including blaCTX-M-55 The acquisition of MDR plasmids by S. enterica described here poses a serious threat to human health. Our study highlights the importance of taking a One Health approach to identify environmental reservoirs of drug-resistant pathogens and MDR plasmids.IMPORTANCE Defining environmental reservoirs hosting mobile genetic elements that shuttle critically important antibiotic resistance genes is key to understanding antimicrobial resistance (AMR) from a One Health perspective. Gulls frequent public amenities, parklands, and sewage and other waste disposal sites and carry drug-resistant Escherichia coli Here, we report on SG17-135, a strain of Salmonella enterica serovar Agona isolated from the cloaca of a silver gull chick nesting on an island in geographic proximity to the greater metropolitan area of Sydney, Australia. SG17-135 is closely related to pathogenic strains of S Agona, displays resistance to nine antimicrobial classes, and carries important virulence gene cargo. Most of the antibiotic resistance genes hosted by SG17-135 are clustered on a large IncHI2 plasmid and are flanked by copies of IS26 Wild birds represent an important link in the evolution and transmission of resistance plasmids, and an understanding of their behavior is needed to expose the interplay between clinical and environmental microbial communities.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Plásmidos/análisis , Salmonella enterica/genética , Animales , Antibacterianos/farmacología , Australia , Charadriiformes/microbiología , ADN Bacteriano/genética , Escherichia coli/patogenicidad , Secuenciación Completa del Genoma
6.
Ecology ; 100(11): e02884, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31498887

RESUMEN

Large rain events drive dramatic resource pulses and the complex pulse-reserve dynamics of arid ecosystems change between high-rain years and drought. However, arid-zone animal responses to short-term changes in climate are unknown, particularly smaller rain events that briefly interrupt longer-term drought. Using arthropods as model animals, we determined the effects of a small rain event on arthropod abundance in western New South Wales, Australia during a longer-term shift toward drought. Arthropod abundance decreased over 2 yr, but captures of 10 out of 15 ordinal taxa increased dramatically after the small rain event (<40 mm). The magnitude of increases ranged from 10.4 million% (collembolans) to 81% (spiders). After 3 months, most taxa returned to prerain abundance. However, small soil-dwelling beetles, mites, spiders, and collembolans retained high abundances despite the onset of winter temperatures and lack of subsequent rain. As predicted by pulse-reserve models, most arid-zone arthropod populations declined during drought. However, small rain events may play a role in buffering some taxa from declines during longer-term drought or other xenobiotic influences. We outline the framework for a new model of animal responses to environmental conditions in the arid zone, as some species clearly benefit from rain inputs that do not dramatically influence primary productivity.


Asunto(s)
Sequías , Ecosistema , Animales , Australia , Lluvia , Suelo
7.
Conserv Physiol ; 6(1): coy028, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977562

RESUMEN

[This corrects the article DOI: 10.1093/conphys/cov025.][This corrects the article DOI: 10.1093/conphys/cov025.].

8.
Ecol Evol ; 8(10): 4771-4780, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29876056

RESUMEN

Interspecific aggression by the noisy miner (Manorina melanocephala), a highly despotic species, is homogenizing woodland avifaunas across eastern Australia. Although a native species, the noisy miner's aggressive exclusion of small birds is a Key Threatening Process under national law. Large-scale removal of noisy miners has been proposed as a management response to this threat following increases in miner presence due to anthropogenic land use practices. We tested this proposal by experimentally removing noisy miners from eucalypt woodland remnants (16-49 ha), assigned randomly as control (n = 12) or treatment (miner removal) sites (n = 12). Standardized bird surveys were conducted before and after removal, and generalized linear mixed models were used to investigate the effect of miner removal on bird assemblage metrics. Despite removing 3552 noisy miners in three sessions of systematic shooting, densities of noisy miners remained similarly high in treatment and control sites, even just 14 days after their removal. However, there was evidence of an increase in richness and abundance of small birds in treatment sites compared to controls-an effect we only expected to see if noisy miner densities were drastically reduced. We suggest that miner removal may have reduced the ability of the recolonizing miners to aggressively exclude small birds, even without substantially reducing miner densities, due to the breakdown of social structures that are central to the species' despotic behaviour. However, this effect on small birds is unlikely to persist in the long term. Synthesis and applications: Despite evidence from other studies that direct removal of noisy miners can result in rapid and sustained conservation benefit for bird communities at small scales, our findings cast doubt on the potential to scale-up this management approach. The circumstances under which direct control of noisy miners can be achieved remain unresolved.

9.
Conserv Physiol ; 3(1): cov025, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27293710

RESUMEN

Conservation agencies are often faced with the difficult task of prioritizing what recovery actions receive support. With the number of species under threat of decline growing globally, research that informs conservation priorities is greatly needed. The relative vulnerability of cryptic or nomadic species is often uncertain, because populations are difficult to monitor and local populations often seem stable in the short term. This uncertainty can lead to inaction when populations are in need of protection. We tested the feasibility of using differences in condition indices as an indication of population vulnerability to decline for related threatened Australian finch sub-species. The Gouldian finch represents a relatively well-studied endangered species, which has a seasonal and site-specific pattern of condition index variation that differs from the closely related non-declining long-tailed finch. We used Gouldian and long-tailed finch condition variation as a model to compare with lesser studied, threatened star and black-throated finches. We compared body condition (fat and muscle scores), haematocrit and stress levels (corticosterone) among populations, seasons and years to determine whether lesser studied finch populations matched the model of an endangered species or a non-declining species. While vulnerable finch populations often had lower muscle and higher fat and corticosterone concentrations during moult (seasonal pattern similar to Gouldian finches), haematocrit values did not differ among populations in a predictable way. Star and black-throated finch populations, which were predicted to be vulnerable to decline, showed evidence of poor condition during moult, supporting their status as vulnerable. Our findings highlight how measures of condition can provide insight into the relative vulnerability of animal and plant populations to decline and will allow the prioritization of efforts towards the populations most likely to be in jeopardy of extinction.

10.
J Comp Physiol B ; 183(8): 1023-37, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23989338

RESUMEN

Seasonal changes in avian hormonal stress responses and condition are well known for common species found at temperate and arctic latitudes, but declining and tropical species are poorly studied. This study compares stress and condition measures of co-occurring declining and non-declining tropical grass finch species in Australia. We monitored declining Gouldian finches (Erythrura gouldiae) and non-declining long-tailed and masked finches (Poepila acuticauda and P. personata) during two seasons that are potentially stressful: peak breeding (early dry season when food is plentiful) and moult (late dry to early wet season when food may be scarce). We measured body condition (muscle and fat), haematocrit, and stress response to capture using plasma corticosterone and binding globulin concentrations. All species had higher muscle and lower fat indices during breeding than moult. Haematocrit did not consistently differ between seasons. Long-tailed finches had higher stress responses during breeding than moult, similar to other passerines studied. Masked finches showed no seasonal changes in stress response. Gouldian finches had stress response patterns opposite to those of long-tailed finches, with higher stress responses during moult. However, seasonal trends in Gouldian and long-tailed finch stress responses sometimes differed between years or sites. The differences in stress response patterns between species suggest that the declining Gouldian finch is more sensitive to recent environmental changes which are thought to further reduce grass seed food resources during the late dry to early wet season. Retention of stress responsiveness during a protracted moult could increase the survival potential of Gouldian finches. This study highlights the utility of stress and condition indices to determine the sensitivity of co-occurring species to environmental conditions.


Asunto(s)
Pinzones/fisiología , Muda/fisiología , Estaciones del Año , Estrés Fisiológico/fisiología , Análisis de Varianza , Animales , Composición Corporal/fisiología , Corticosterona/sangre , Hematócrito , Northern Territory , Análisis de Regresión , Especificidad de la Especie , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...