Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1436968, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170618

RESUMEN

Invariant natural killer T (iNKT) cells are immune cells that harness properties of both the innate and adaptive immune system and exert multiple functions critical for the control of various diseases. Prevention of graft-versus-host disease (GVHD) by iNKT cells has been demonstrated in mouse models and in correlative human studies in which high iNKT cell content in the donor graft is associated with reduced GVHD in the setting of allogeneic hematopoietic stem cell transplants. This suggests that approaches to increase the number of iNKT cells in the setting of an allogeneic transplant may reduce GVHD. iNKT cells can also induce cytolysis of tumor cells, and murine experiments demonstrate that activating iNKT cells in vivo or treating mice with ex vivo expanded iNKT cells can reduce tumor burden. More recently, research has focused on testing anti-tumor efficacy of iNKT cells genetically modified to express a chimeric antigen receptor (CAR) protein (CAR-iNKT) cells to enhance iNKT cell tumor killing. Further, several of these approaches are now being tested in clinical trials, with strong safety signals demonstrated, though efficacy remains to be established following these early phase clinical trials. Here we review the progress in the field relating to role of iNKT cells in GVHD prevention and anti- cancer efficacy. Although the iNKT field is progressing at an exciting rate, there is much to learn regarding iNKT cell subset immunophenotype and functional relationships, optimal ex vivo expansion approaches, ideal treatment protocols, need for cytokine support, and rejection risk of iNKT cells in the allogeneic setting.


Asunto(s)
Enfermedad Injerto contra Huésped , Células T Asesinas Naturales , Células T Asesinas Naturales/inmunología , Humanos , Animales , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/terapia , Enfermedad Injerto contra Huésped/prevención & control , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Neoplasias/terapia , Neoplasias/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Investigación Biomédica Traslacional , Ratones , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética
3.
Transplant Cell Ther ; 30(6): 559-564, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608806

RESUMEN

A shortage of transplant and cellular therapy (TCT) physicians is expected given the expansion of TCT indications and the scope of practice of TCT programs in recent years. American Society of Transplantation and Cellular Therapy (ASTCT) conducted a survey of early career transplant physicians and trainees to assess the factors that prompted them to pursue to career in TCT. This was a cross-sectional survey conducted via emails sent to the ASTCT membership. Fifty-nine respondents completed the survey. The vast majority of respondents decided to pursue a career in TCT during their hematology/oncology fellowship (41%), followed by during residency (25%) or medical school (18%), and a majority of them had some exposure to TCT in their clinical training already. The most common reason for choosing to specialize in TCT was interest in the clinical practice of TCT (81%) closely followed by the scientific allure of the field (75%). Most respondents were extremely committed to remaining in this field of practice. We found that those in the field report high levels of satisfaction despite factors that would otherwise predispose them to burnout. A systematic and sustained effort to promote trainee engagement that could result in improved recruitment and retention in the field of TCT is needed. Professional societies in partnership with educational institutions could conduct outreach and help attract trainees from diverse backgrounds.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Médicos , Humanos , Estudios Transversales , Médicos/psicología , Selección de Profesión , Masculino , Femenino , Encuestas y Cuestionarios , Tratamiento Basado en Trasplante de Células y Tejidos , Adulto , Comités Consultivos , Sociedades Médicas , Estados Unidos
4.
Sci Transl Med ; 15(727): eadg6822, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38117899

RESUMEN

Studies of the monogenic autoimmune disease immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) have elucidated the essential function of the transcription factor FOXP3 and thymic-derived regulatory T cells (Tregs) in controlling peripheral tolerance. However, the presence and the source of autoreactive T cells in IPEX remain undetermined. Here, we investigated how FOXP3 deficiency affects the T cell receptor (TCR) repertoire and Treg stability in vivo and compared T cell abnormalities in patients with IPEX with those in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED). To study Tregs independently of their phenotype and to analyze T cell autoreactivity, we combined Treg-specific demethylation region analyses, single-cell multiomic profiling, and bulk TCR sequencing. We found that patients with IPEX, unlike patients with APECED, have expanded autoreactive T cells originating from both autoreactive effector T cells (Teffs) and Tregs. In addition, a fraction of the expanded Tregs from patients with IPEX lost their phenotypic and functional markers, including CD25 and FOXP3. Functional experiments with CRISPR-Cas9-mediated FOXP3 knockout Tregs and Tregs from patients with IPEX indicated that the patients' Tregs gain a TH2-skewed Teff-like function, which is consistent with immune dysregulation observed in these patients. Analyses of FOXP3 mutation-carrier mothers and a patient with IPEX after hematopoietic stem cell transplantation indicated that Tregs expressing nonmutated FOXP3 prevent the accumulation of autoreactive Teffs and unstable Tregs. These findings could be directly used for diagnostic and prognostic purposes and for monitoring the effects of immunomodulatory treatments.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Poliendocrinopatías Autoinmunes , Humanos , Poliendocrinopatías Autoinmunes/genética , Poliendocrinopatías Autoinmunes/terapia , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Linfocitos T Reguladores , Mutación/genética , Síndrome , Factores de Transcripción Forkhead/genética , Receptores de Antígenos de Linfocitos T/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA