Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 13(12)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36553653

RESUMEN

The structurally and genetically distinct sigma-1 receptor (S1R) and sigma-2 receptor (S2R) comprise a unique class of drug binding sites. Their alleles are associated with human diseases involving neuronal systems, such as age-related macular degeneration (AMD) characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. Previous studies have suggested neuroprotective benefits for the brain and retina from pharmacological modulation of S1R and/or S2R. However, the effect of such modulation on AMD pathology remains underexplored. Here, we evaluated S1R- or S2R-selective modulation in an AMD-related model of Abca4-/-Rdh8-/- mice with a disrupted visual cycle that predisposes RPE and photoreceptors to illumination-induced damage. For S1R modulation, we used (+)-pentazocine, which is a high-affinity S1R-selective drug. For S2R modulation, we chose CM398, a high-affinity and highly S2R-selective ligand with drug-like properties. Abca4-/-Rdh8-/- mice received a single i.p. injection of (+)-pentazocine or CM398 or vehicle 30 min before illumination. Pretreatment with (+)-pentazocine improved electroretinogram a- and b-waves compared to that with vehicle. Consistently, in another AMD-related mouse model induced by tail-vein injected NaIO3, S1R genetic ablation aggravated photoreceptor loss. In Abca4-/-Rdh8-/- mice, pretreatment with CM398 appeared to partially avert illumination-induced photoreceptor loss and autofluorescent granule formation that signals RPE damage, as revealed by optical coherence tomography. Thus, this study using AMD-related models provides evidence of photoreceptor protection afforded by selective modulation of S1R or S2R.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Ratones , Transportadoras de Casetes de Unión a ATP/metabolismo , Modelos Animales de Enfermedad , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/genética , Degeneración Macular/metabolismo , Pentazocina/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/patología , Degeneración Retiniana/metabolismo , Receptor Sigma-1
2.
Exp Eye Res ; 225: 109249, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36152913

RESUMEN

Previously we identified B6.EDA+/+ mice as a novel mouse model that presents with elevated IOP and trabecular meshwork damage. Here, we expand on our previous findings by measuring aqueous humor outflow facility and analyzing the integrity of the inner wall of Schlemm's canal. As expected, intraocular pressure (IOP) was increased, and outflow facility was decreased compared to C57BL/6J controls. B6.EDA+/+ mice had significantly increased expression of the adherens junction protein, VE-cadherin by the inner wall endothelium of Schlemm's canal. These data suggest that in addition to trabecular meshwork damage, there are changes in Schlemm's canal in B6.EDA+/+ mice that lead to aqueous outflow dysfunction and ocular hypertension.


Asunto(s)
Glaucoma , Malla Trabecular , Ratones , Animales , Ratones Endogámicos C57BL , Esclerótica , Humor Acuoso/metabolismo , Presión Intraocular , Modelos Animales de Enfermedad
3.
Cell Biosci ; 12(1): 72, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35619185

RESUMEN

BACKGROUND: Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of primary open angle glaucoma and is due to trabecular meshwork (TM) damage. Here, we investigate the role of an endogenous Toll-like receptor 4 (TLR4) ligand, FN-EDA, in the development of glaucoma utilizing a transgenic mouse strain (B6.EDA+/+) that constitutively expresses only FN containing the EDA isoform. METHODS: Eyes from C57BL6/J (wild-type), B6.EDA+/+ (constitutively active EDA), B6.EDA-/- (EDA null) mice were processed for electron microscopy and consecutive images of the entire length of the TM and Schlemm's canal (SC) from anterior to posterior were collected and montaged into a single image. ECM accumulation, basement membrane length, and size and number of giant vacuoles were quantified by ImageJ analysis. Tlr4 and Iba1 expression in the TM and ONH cells was conducted using RNAscope in situ hybridization and immunohistochemistry protocols. IOP was measured using a rebound tonometer, ON damage assessed by PPD stain, and RGC loss quantified in RBPMS labeled retina flat mounts. RESULTS: Ultrastructure analyses show the TM of B6.EDA+/+ mice have significantly increased accumulation of ECM between TM beams with few empty spaces compared to C57BL/6 J mice (p < 0.05). SC basement membrane is thicker and more continuous in B6.EDA+/+ mice compared to C57BL/6 J. No significant structural differences are detected in the TM of EDA null mice. Tlr4 and Iba1 expression is increased in the TM of B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.05). IOP is significantly higher in B6.EDA+/+ mice compared to C57BL/6 J eyes (p < 0.001), and significant ON damage (p < 0.001) and RGC loss (p < 0.05) detected at 1 year of age. Tlr4 mRNA is expressed in mouse ONH cells, and is present in ganglion cell axons, microglia, and astrocytes. There is a significant increase in the area occupied by Iba-1 positive microglia cells in the ONH of B6.EDA+/+ mice compared to C57BL/6 J control eyes (p < 0.01). CONCLUSIONS: B6.EDA+/+ mice have increased ECM accumulation in the TM, elevated IOP, enhanced proinflammatory changes in the ONH, loss of RGCs, and ONH damage. These data suggest B6.EDA+/+ mice recapitulate many aspects of glaucomatous damage.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36911656

RESUMEN

The optic nerve head (ONH) is a place of vulnerability during glaucoma progression due to increased intraocular pressure damaging the retinal ganglion cell axons. The molecular signaling pathways involved in generating glaucomatous ONH damage has not been fully elucidated. There is a great deal of evidence that pro-fibrotic TGFß2 signaling is involved in modulating the ECM environment within the lamina cribrosa (LC) region of the ONH. Here we investigated the role of signaling crosstalk between the TGFß2 pathway and the toll-like receptor 4 (TLR4) pathway within the LC. ECM deposition was examined between healthy and glaucomatous human ONH sections, finding increases in fibronectin and fibronectin extra domain A (FN-EDA) an isoform of fibronectin known to be a damage associated molecular pattern (DAMP) that can activate TLR4 signaling. In human LC cell cultures derived from healthy donor eyes, inhibition of TLR4 signaling blocked TGFß2 induced FN and FN-EDA expression. Activation of TLR4 by cellular FN (cFN) containing the EDA isoform increased both total FN production and Collagen-1 production and this effect was dependent on TLR4 signaling. These studies identify TGFß2-TLR4 signaling crosstalk in LC cells of the ONH as a novel pathway regulating ECM and DAMP production.

5.
Cell Signal ; 86: 110078, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245862

RESUMEN

The retinal pigment epithelium (RPE) is critical to the survival of the overlying photoreceptors. Subject to light exposure and active metabolism, the RPE and photoreceptors are particularly susceptible to oxidative damage that plays an important part in age-related macular degeneration (AMD). Recent meta-analyses identified TMEM97 as a new putative AMD risk locus, though it is yet to be functionally verified. The role of TMEM97 in the retina and RPE is not known. Here we investigated TMEM97 function using the sodium iodate model of oxidant-induced retinal degeneration in TMEM97 knockout (KO) mice. We found markedly increased reactive oxygen species (ROS) and loss of photoreceptos in TMEM97 KO mouse retinas relative to wild type (WT) controls. In vitro, sodium iodate treatment of CRISPR-mediated TMEM97 KO RPE cells resulted in diminished abundance of the master antioxidant transcription factor NRF2 and its target gene product SOD2, the mitochondrial superoxide dismutase, as well as elevated ROS and apoptosis markers. Moreover, TMEM97 KO affected proteins key to mitochondrial and lysosomal stability and impeded autophagy flux. These findings suggest that the absence of TMEM97 in RPE cells disturbs redox-balancing systems, thereby heightening oxidative stress. As TMEM97 is a druggable target, this study may inspire interest in basic and translational research in the context of retinal degeneration.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Degeneración Macular/metabolismo , Ratones , Ratones Endogámicos C57BL , Oxidantes/metabolismo , Oxidantes/farmacología , Estrés Oxidativo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
6.
Sci Rep ; 10(1): 9815, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555351

RESUMEN

Elevated intraocular pressure (IOP) is a major risk factor for the development and progression of primary open angle glaucoma and is due to trabecular meshwork (TM) damage, which leads to impaired aqueous humor outflow. Here, we explore a novel molecular mechanism involved in glaucomatous TM damage. We investigated the role of an endogenous Toll-like receptor 4 (TLR4) ligand, fibronectin-EDA (FN-EDA), in TGFß2-induced ocular hypertension in mice. We utilized transgenic mouse strains that either constitutively express only FN containing the EDA isoform or contain an EDA-null allele and express only FN lacking EDA, with or without a mutation in Tlr4, in our inducible mouse model of ocular hypertension by injection of Ad5.TGFß2. IOP was measured over time and eyes accessed by immunohistochemistry for total FN and FN-EDA expression. Constitutively active EDA caused elevated IOP starting at 14 weeks of age. Ad5.TGFß2 induced ocular hypertension in wildtype C57BL/6J mice and further amplified the IOP in constitutively active EDA mice. TLR4 null and EDA null mice blocked Ad5.TGFß-induced ocular hypertension. Total FN and FN-EDA isoform expression increased in response to Ad5.TGFß2. These data suggest that both TLR4 and FN-EDA contribute to TGFß2 induced ocular hypertension.


Asunto(s)
Fibronectinas/química , Fibronectinas/metabolismo , Presión Intraocular , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Animales , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Malla Trabecular/citología , Malla Trabecular/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo
7.
Oncotarget ; 8(31): 51317-51330, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881650

RESUMEN

The sigma-1 receptor (Sig1R) is an endoplasmic reticulum chaperonin that is attracting tremendous interest as a potential anti-neurodegenerative target. While this membrane protein is known to reside in the inner nuclear envelope (NE) and influences transcription, apparent Sig1R presence in the nucleoplasm is often observed, seemingly contradicting its NE localization. We addressed this confounding issue by applying an antibody-free approach of electron microscopy (EM) to define Sig1R nuclear localization. We expressed APEX2 peroxidase fused to Sig1R-GFP in a Sig1R-null NSC34 neuronal cell line generated with CRISPR-Cas9. APEX2-catalyzed gold/silver precipitation markedly improved EM clarity and confirmed an apparent intra-nuclear presence of Sig1R. However, serial sectioning combined with APEX2-enhanced EM revealed that Sig1R actually resided in the nucleoplasmic reticulum (NR), a specialized nuclear compartment formed via NE invagination into the nucleoplasm. NR cross-sections also indicated Sig1R in ring-shaped NR membranes. Thus, this study distinguishes Sig1R in the NR which could otherwise appear localized in the nucleoplasm if detected with low-resolution methods. Our finding is important for uncovering potential Sig1R regulations in the nucleus.

8.
Mol Neurodegener ; 12(1): 68, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28927431

RESUMEN

BACKGROUND: Retinitis pigmentosa (RP) is the most common inherited retinal degenerative disease yet with no effective treatment available. The sigma-1 receptor (S1R), a ligand-regulated chaperone, emerges as a potential retina-protective therapeutic target. In particular, pharmacological activation of S1R was recently shown to rescue cones in the rd10 mouse, a rod Pde6b mutant that recapitulates the RP pathology of autonomous rod degeneration followed by secondary death of cones. The mechanisms underlying the S1R protection for cones are not understood in detail. METHODS: By rearing rd10/S1R-/- and rd10/S1R+/+ mice in dim light to decelerate rapid rod/cone degeneration, we were able to compare their retinal biochemistry, histology and functions throughout postnatal 3-6 weeks (3 W-6 W). RESULTS: The receptor-interacting protein kinases (RIP1/RIP3) and their interaction (proximity ligation) dramatically up-regulated after 5 W in rd10/S1R-/- (versus rd10/S1R+/+) retinas, indicative of intensified necroptosis activation, which was accompanied by exacerbated loss of cones. Greater rod loss in rd10/S1R-/- versus rd10/S1R+/+ retinas was evidenced by more cleaved Caspase3 (4 W) and lower rod electro-retinographic a-waves (4 W-6 W), concomitant with reduced LC3-II and CHOP (4 W-6 W), markers of autophagy and endoplasmic reticulum stress response, respectively. However, the opposite occurred at 3 W. CONCLUSION: This study reveals previously uncharacterized S1R-associated mechanisms during rd10 photoreceptor degeneration, including S1R's influences on necroptosis and autophagy as well as its biphasic role in rod degeneration upstream of cone death.


Asunto(s)
Receptores sigma/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/patología , Receptor Sigma-1
9.
Adv Exp Med Biol ; 964: 255-265, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28315276

RESUMEN

The membrane bound 223 amino acid Sigma-1 Receptor (S1R) serves as a molecular chaperone and functional regulator of many signaling proteins. Spinal cord motor neuron activation occurs, in part, via large ventral horn cholinergic synapses called C-boutons/C-terminals. Chronic excitation of motor neurons and alterations in C-terminals has been associated with Amyotrophic Lateral Sclerosis (ALS ). The S1R has an important role in regulating motor neuron function. High levels of the S1R are localized in postsynaptic endoplasmic reticulum (ER) subsurface cisternae within 10-20 nm of the plasma membrane that contain muscarinic type 2 acetylcholine receptors (M2AChR), calcium activated potassium channels (Kv2.1) and slow potassium (SK) channels. An increase in action potentials in the S1R KO mouse motor neurons indicates a critical role for the S1R as a "brake" on motor neuron function possibly via calcium dependent hyperpolarization mechanisms involving the aforementioned potassium channels. The longevity of SOD-1/S1R KO ALS mice is significantly reduced compared to SOD-1/WT ALS controls. The S1R colocalizes in C-terminals with Indole(ethyl)amine-N-methyl transferase (INMT ), the enzyme that produces the S1R agonist , N,N'- dimethyltryptamine (DMT). INMT methylation can additionally neutralize endogenous toxic sulfur and selenium derivatives thus providing functional synergism with DMT to reduce oxidative stress in motor neurons . Small molecule activation of the S1R and INMT thus provides a possible therapeutic strategy to treat ALS .


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Receptores sigma/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Humanos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Receptor Sigma-1
10.
Adv Exp Med Biol ; 964: 285-297, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28315278

RESUMEN

This review discusses recent advances towards understanding the sigma-1 receptor (S1R) as an endogenous neuro-protective mechanism in the retina , a favorable experimental model system. The exquisite architecture of the mammalian retina features layered and intricately wired neurons supported by non-neuronal cells. Ganglion neurons, photoreceptors , as well as the retinal pigment epithelium, are susceptible to degeneration that leads to major retinal diseases such as glaucoma , diabetic retinopathy , and age-related macular degeneration (AMD), and ultimately, blindness. The S1R protein is found essentially in every retinal cell type, with high abundance in the ganglion cell layer. Ultrastructural studies of photoreceptors, bipolar cells, and ganglion cells show a predominant localization of S1R in the nuclear envelope. A protective role of S1R for ganglion and photoreceptor cells is supported by in vitro and in vivo experiments. Most recently, studies suggest that S1R may also protect retinal neurons via its activities in Müller glia and microglia. The S1R functions in the retina may be attributed to a reduction of excitotoxicity, oxidative stress , ER stress response, or inflammation. S1R knockout mice are being used to delineate the S1R-specific effects. In summary, while significant progress has been made towards the objective of establishing a S1R-targeted paradigm for retinal neuro-protection , critical questions remain. In particular, context-dependent effects and potential side effects of interventions targeting S1R need to be studied in more diverse and more clinically relevant animal models.


Asunto(s)
Receptores sigma/metabolismo , Retina/metabolismo , Animales , Fármacos Neuroprotectores/farmacología , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/metabolismo , Retina/efectos de los fármacos , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Neuronas Retinianas/efectos de los fármacos , Neuronas Retinianas/metabolismo , Receptor Sigma-1
11.
J Control Release ; 247: 153-166, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28063892

RESUMEN

Glaucoma is a common blinding disease characterized by loss of retinal ganglion cells (RGCs). To date, there is no clinically available treatment directly targeting RGCs. We aim to develop an RGC-targeted intraocular drug delivery system using unimolecular micelle nanoparticles (unimNPs) to prevent RGC loss. The unimNPs were formed by single/individual multi-arm star amphiphilic block copolymer poly(amidoamine)-polyvalerolactone-poly(ethylene glycol) (PAMAM-PVL-PEG). While the hydrophobic PAMAM-PVL core can encapsulate hydrophobic drugs, the hydrophilic PEG shell provides excellent water dispersity. We conjugated unimNPs with the cholera toxin B domain (CTB) for RGC-targeting and with Cy5.5 for unimNP-tracing. To exploit RGC-protective sigma-1 receptor (S1R), we loaded unimNPs with an endogenous S1R agonist dehydroepiandrosterone (DHEA) as an FDA-approved model drug. These unimNPs produced a steady DHEA release in vitro for over two months at pH7.4. We then co-injected (mice, intraocular) unimNPs with the glutamate analog N-methyl-d-aspartate (NMDA), which is excito-toxic and induces RGC death. The CTB-conjugated unimNPs (i.e., targeted NPs) accumulated at the RGC layer and effectively preserved RGCs at least for 14days, whereas the unimNPs without CTB (i.e., non-targeted NPs) showed neither accumulation at nor protection of NMDA-treated RGCs. Consistent with S1R functions, targeted NPs relative to non-targeted NPs showed markedly better inhibitory effects on apoptosis and oxidative/inflammatory stresses in the RGC layer. Hence, the DHEA-loaded, CTB-conjugated unimNPs represent an RGC/S1R dual-targeted nanoplatform that generates an efficacious template for further development of a sustainable intraocular drug delivery system to protect RGCs, which may be applicable to treatments directed at glaucomatous pathology.


Asunto(s)
Deshidroepiandrosterona/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Micelas , Nanopartículas/metabolismo , Receptores sigma/agonistas , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Toxina del Cólera/química , Toxina del Cólera/metabolismo , Deshidroepiandrosterona/farmacología , Dendrímeros/química , Interacciones Hidrofóbicas e Hidrofílicas , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Polietilenglicoles/química , Receptores sigma/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Receptor Sigma-1
12.
Neuroscience ; 331: 148-57, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27339730

RESUMEN

Sigma-1 receptor (S1R) is a unique pluripotent modulator of living systems and has been reported to be associated with a number of neurological diseases including pathological pain. Intrathecal administration of S1R antagonists attenuates the pain behavior of rodents in both inflammatory and neuropathic pain models. However, the S1R localization in the spinal cord shows a selective ventral horn motor neuron distribution, suggesting the high likelihood of S1R in the dorsal root ganglion (DRG) mediating the pain relief by intrathecally administered drugs. Since primary afferents are the major component in the pain pathway, we examined the mouse and rat DRGs for the presence of the S1R. At both mRNA and protein levels, quantitative RT-PCR (qRT-PCR) and Western confirmed that the DRG contains greater S1R expression in comparison to spinal cord, cortex, or lung but less than liver. Using a custom-made highly specific antibody, we demonstrated the presence of a strong S1R immuno-fluorescence in all rat and mouse DRG neurons co-localizing with the Neuron-Specific Enolase (NSE) marker, but not in neural processes or GFAP-positive glial satellite cells. In addition, S1R was absent in afferent terminals in the skin and in the dorsal horn of the spinal cord. Using immuno-electron microscopy, we showed that S1R is detected in the nuclear envelope and endoplasmic reticulum (ER) of DRG cells. In contrast to other cells, S1R is also located directly at the plasma membrane of the DRG neurons. The presence of S1R in the nuclear envelope of all DRG neurons suggests an exciting potential role of S1R as a regulator of neuronal nuclear activities and/or gene expression, which may provide insight toward new molecular targets for modulating nociception at the level of primary afferent neurons.


Asunto(s)
Ganglios Espinales/metabolismo , Ganglios Espinales/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Receptores sigma/metabolismo , Animales , Anticuerpos , Western Blotting , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Inmunohistoquímica , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Microscopía Inmunoelectrónica , Membrana Nuclear/metabolismo , Fosfopiruvato Hidratasa/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores sigma/genética , Receptores sigma/inmunología , Receptor Sigma-1
13.
Sci Rep ; 5: 10689, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26033680

RESUMEN

The Sigma-1 receptor (S1R) is known to play a protective role in the central nervous system including the retina. A major barrier for understanding the underlying mechanism is an ambiguity of S1R subcellular localizations. We thus conducted the first electron microscopy (EM) study of S1R subcellular distribution in the mouse retina. Immuno-EM imaging showed previously under-appreciated S1R presence in photoreceptor cells. Unlike in other cell types in previous reports, in photoreceptor cells S1R was found in the nuclear envelope but not localized in the endoplasmic reticulum (ER), raising a possibility of S1R-mediated modulatory mechanisms different than conventionally thought. While in bipolar cells S1R was detected only in the nuclear envelope, in ganglion cells S1R was identified predominantly in the nuclear envelope and found in the ER as well. A predominant localization of S1R in the nuclear envelope in all three retinal neurons implicates a potential role of S1R in modulating nuclear activities. Moreover, its absence in the plasma membrane and presence in the subsurface ER cisternae that are juxtaposed to the plasma membrane in ganglion cells may lend mechanistic insights generally important for frequently reported S1R modulations of ion channels in neurons.


Asunto(s)
Receptores sigma/metabolismo , Neuronas Retinianas/metabolismo , Neuronas Retinianas/ultraestructura , Animales , Bovinos , Expresión Génica , Haplorrinos , Humanos , Espacio Intracelular/metabolismo , Ratones , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Transporte de Proteínas , Receptores sigma/genética , Retina/embriología , Retina/metabolismo , Receptor Sigma-1
14.
J Neurosci ; 35(15): 6179-94, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25878289

RESUMEN

Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity.


Asunto(s)
Autofagia/efectos de los fármacos , Toxinas Botulínicas Tipo A/metabolismo , Hipocampo/citología , Neuronas/citología , Neurotoxinas/metabolismo , Androstadienos/farmacología , Animales , Animales Recién Nacidos , Autofagia/fisiología , Transporte Axonal/efectos de los fármacos , Transporte Axonal/fisiología , Toxinas Botulínicas Tipo A/farmacología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Femenino , Técnicas In Vitro , Macrólidos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Neurotoxinas/farmacología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Receptores de Factor de Crecimiento Nervioso/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Wortmanina
15.
J Pharmacol Sci ; 127(1): 10-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25704013

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease affecting spinal cord motoneurons (MN) with an associative connection to Frontotemporal Lobar Dementia (FTLD). The endoplasmic reticulum (ER) bound Sigma-1 Receptor (S1R) chaperone protein localizes to specialized ER cisternae within 10 nm of the plasma membrane in spinal cord ventral horn cholinergic post synaptic C-terminals. Removal of the S1R gene in the Superoxide Dismutase-1 (SOD-1) mouse model of ALS exacerbated the neurodegenerative condition and resulted in a significantly reduced longevity when compared to the SOD-1/S1R wild type (WT) mouse. The proposed amelioration of the ALS phenotype by the S1R is likely due to a "brake" on excitation of the MN as evidenced by a reduction in action potential generation in the MN of the WT when compared to the S1R KO mouse MN. Although the precise signal transduction pathway(s) regulated by the S1R in the MN has/have not been elucidated at present, it is likely that direct or indirect functional interactions occur between the S1R in the ER cisternae with voltage gated potassium channels and/or with muscarinic M2 receptor signaling in the post synaptic plasma membrane. Possible mechanisms for regulation of MN excitability by S1R are discussed.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Receptores sigma/fisiología , Potenciales de Acción/fisiología , Esclerosis Amiotrófica Lateral/genética , Animales , Humanos , Ratones Noqueados , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Receptores sigma/genética , Receptor Sigma-1
16.
EBioMedicine ; 2(11): 1806-13, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26870805

RESUMEN

The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18-21 kDa, as shown by specific photolabeling with [(3)H]-Azido-DTG and [(125)I]-iodoazido-fenpropimorph ([(125)I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [(3)H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [(125)I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 µM and 350 µM, respectively), as determined in competition with [(3)H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20-80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes.


Asunto(s)
Sitios de Unión , Proteínas de la Membrana/genética , Receptores de Progesterona/genética , Receptores sigma/genética , Empalme Alternativo , Animales , Secuencia de Bases , Línea Celular , Expresión Génica , Técnicas de Inactivación de Genes , Orden Génico , Vectores Genéticos/genética , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Progesterona/metabolismo , Unión Proteica , Ratas , Receptores de Progesterona/química , Receptores de Progesterona/metabolismo , Receptores sigma/metabolismo
17.
Chembiochem ; 13(15): 2277-89, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23001760

RESUMEN

Sigma (σ) receptors are unique non-opioid binding sites that are associated with a broad range of disease states. Sigma-2 receptors provide a promising target for diagnostic imaging and pharmacological interventions to curb tumor progression. Most recently, the progesterone receptor (PGRMC1, 25 kDa) has been shown to have σ2 receptor-like binding properties, thus highlighting the need to understand the biological function of an 18 kDa protein that exhibits σ2-like photoaffinity labeling (denoted here as σ2-18k) but the amino acid sequence of which is not known. In order to provide new tools for the study of the σ2-18k protein, we have developed bifunctional σ receptor ligands each bearing a benzophenone photo-crosslinking moiety and an alkyne group to which an azide-containing biotin affinity tag can be covalently attached through click chemistry after photo-crosslinking. Although several compounds showed favorable σ2 binding properties, the highest affinity (2 nM) and the greatest potency in blocking photolabeling of σ2-18k by a radioactive photoaffinity ligand was shown by compound 22. These benzophenone-alkyne σ receptor ligands might therefore be amenable for studying the σ2-18k protein through chemical biology approaches. To the best of our knowledge, these compounds represent the first reported benzophenone-containing clickable σ receptor ligands, which might potentially have broad applications based on the "plugging in" of various tags.


Asunto(s)
Alquinos/química , Alquinos/farmacología , Benzofenonas/química , Benzofenonas/farmacología , Receptores sigma/metabolismo , Línea Celular , Química Clic , Reactivos de Enlaces Cruzados/química , Humanos , Ligandos , Procesos Fotoquímicos
18.
Mol Vis ; 17: 1034-43, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21541278

RESUMEN

PURPOSE: The sigma-1 receptor (σR1), a ligand-operated chaperone, has been inferred to be neuroprotective in previous studies using σR1 ligands. The σR1 specificity of the protective function, however, has yet to be firmly established, due to the existence of non-σR1 targets of the ligands. Here, we used the σR1-knockout mouse (Sigmar1(-/-)) to demonstrate unambiguously the role of the σR1 in protecting the retinal ganglion cells against degeneration after acute damage to the optic nerve. METHODS: Retinal σR binding sites were labeled with radioiodinated σR ligands and analyzed by autoradiography. Localization of the σR1 was performed by indirect immunofluorescence on frozen retinal sections. Retinal ganglion cell death was induced by acute optic nerve crush in wild-type and Sigmar1(-/-) mice. Surviving cells in the ganglion cell layer were counted on Nissl-stained retinal whole mounts 7 days after the crush surgery. RESULTS: Photoaffinity labeling indicated the presence of the σR1 in the retina, in concentrations equivalent to those in liver tissue. Immunolabeling detected this receptor in cells of both the ganglion cell layer and the photoreceptor cell layer in wild-type retinas. Quantification of cells remaining after optic nerve crush showed that 86.8±7.9% cells remained in the wild-type ganglion cell layer, but only 68.3±3.4% survived in the Sigmar1(-/-), demonstrating a significant difference between the wild-type and the Sigmar1(-/-) in crush-induced ganglion cell loss. CONCLUSIONS: Our data indicated faster retinal ganglion cell death in Sigmar1(-/-) than in wild-type mice under the stresses caused by optic nerve crush, providing direct evidence for a role of the σR1 in alleviating retinal degeneration. This conclusion is consistent with the previous pharmacological studies using σR1 agonists. Thus, our study supports the idea that the σR1 is a promising therapeutic target for neurodegenerative retinal diseases, such as glaucoma.


Asunto(s)
Células Fotorreceptoras/metabolismo , Receptores sigma , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Autorradiografía , Recuento de Células , Modelos Animales de Enfermedad , Glaucoma/metabolismo , Glaucoma/fisiopatología , Ratones , Ratones Noqueados , Compresión Nerviosa/efectos adversos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Nervio Óptico/metabolismo , Nervio Óptico/patología , Células Fotorreceptoras/citología , ARN Mensajero/análisis , Ensayo de Unión Radioligante , Receptores sigma/deficiencia , Receptores sigma/genética , Degeneración Retiniana/fisiopatología , Células Ganglionares de la Retina/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor Sigma-1
19.
Neurosci Lett ; 482(3): 225-9, 2010 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-20655363

RESUMEN

The alpha and beta tubulins compose the microtubule cytoskeleton which is involved in many cellular processes such as vesicular transport. The photoreceptor cells in the retina are neurons specialized for phototransduction. Here we report a novel interaction between tubulin and the photoreceptor cGMP phosphodiesterase (PDE6) gamma subunit (PDE gamma). The specificity and molecular details of the PDE gamma:tubulin interaction were analyzed through the experiments of pull down, microtubule co-sedimentation, and NMR spectroscopy. The tubulin-interacting site was identified to be in the PDE gamma C-terminal I67-G85 region, and the interaction interface appeared to be distinct from those with the other PDE gamma targets in phototransduction. We also observed that PDE gamma interacted with tubulin in a GTP-dependent manner. Our findings offer implications for non-phototransduction role(s) of PDE gamma in the photoreceptor neurons.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Tubulina (Proteína)/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Bovinos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Ratones , Datos de Secuencia Molecular , Tubulina (Proteína)/química
20.
Eur J Pharmacol ; 609(1-3): 19-26, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19285059

RESUMEN

The sigma1 receptor is distinguished for its ability to bind various pharmacological agents including drugs of abuse such as cocaine and methamphetamine. Some endogenous ligands have been identified as putative sigma1 receptor regulators. High affinity ligands for the sigma1 receptor contain a nitrogen atom connected to long alkyl chains. We found that long alkyl chain primary amines including endogenous amines belonging to the sphingolipid family such as D-erythro-sphingosine and sphinganine bind with considerable affinity to the sigma1 receptor but not to the sigma2 receptor. The binding of D-erythro-sphingosine to the sigma1 receptor appears to be competitive in nature as assessed against the radioligand [3H]-(+)-pentazocine. Interestingly, the well studied sphingolipid mediator sphingosine-1 phosphate did not bind to the sigma1 or the sigma2 receptor. Sphingosine is converted to sphingosine-1 phosphate by a family of sphingosine kinases that regulate the relative levels of these two bioactive lipids in the cell. The selective binding of sphingosine but not sphingosine-1 phosphate to the sigma1 receptor suggests a mechanism for regulation of sigma1 receptor activity by the sphingosine kinase. We have successfully reconstituted this hypothetical model in HEK-293 cells overexpressing both the sigma1 receptor and sphingosine kinase-1. The data presented here strongly supports sphingosine as an endogenous modulator of the sigma1 receptor.


Asunto(s)
Aminas/metabolismo , Receptores sigma/metabolismo , Esfingolípidos/metabolismo , Aminas/química , Animales , Unión Competitiva , Proteínas Portadoras/metabolismo , Línea Celular , Interacciones Farmacológicas , Epítopos , Escherichia coli/genética , Cobayas , Histidina/química , Humanos , Concentración 50 Inhibidora , Riñón/citología , Cinética , Ligandos , Hígado/metabolismo , Proteínas de Unión a Maltosa , Membranas/efectos de los fármacos , Membranas/metabolismo , Estructura Molecular , Pentazocina/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ensayo de Unión Radioligante , Ratas , Receptores sigma/química , Esfingosina/análogos & derivados , Esfingosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...